IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3247-d1628672.html
   My bibliography  Save this article

Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation

Author

Listed:
  • Lingling Wei

    (College of Environment and Energy, South China University of Technology, Guangzhou 510006, China)

  • Jinquan Wan

    (College of Environment and Energy, South China University of Technology, Guangzhou 510006, China)

  • Zhicheng Yan

    (College of Environment and Energy, South China University of Technology, Guangzhou 510006, China)

  • Yan Wang

    (College of Environment and Energy, South China University of Technology, Guangzhou 510006, China)

Abstract

Sustainable recycling of carbon resources from waste-activated sludge (WAS) is essential for advancing the circular wastewater economy. Anaerobic fermentation provides an eco-efficient pathway for converting organic matter from waste-activated sludge into volatile fatty acids (VFAs). In this study, Fe-N modified biochar was innovatively prepared from WAS for acetic acid yield enhancement, and the system realized the closure of the material cycle. Results show that adding Fe-N-modified biochar (made under the conditions of 0.2M FeCl 3 and 10 g/L urea) led to a 38.8% increase in acetic acid yield (1745 mg/L) and a 5.7% increase in its percentage (60.5%) compared to the control. It also improved sludge hydrolysis and hydrolase activity. In addition, Fe-N-modified biochar increased the relative abundance of Chloroflexi , Actinobacteria , and Bacteroidetes , among which Chloroflexi is an electro-active microorganism that promotes the transformation of propionic and butyric acids to acetic acid, while Bacteroidetes is the primary microorganism responsible for VFA production. In summary, Fe-N-modified biochar may serve as an effective material for promoting acetic acid production during the anaerobic fermentation of WAS.

Suggested Citation

  • Lingling Wei & Jinquan Wan & Zhicheng Yan & Yan Wang, 2025. "Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation," Sustainability, MDPI, vol. 17(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3247-:d:1628672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessio Castagnoli & Serena Falcioni & Eleftherios Touloupakis & Francesco Pasciucco & Erika Pasciucco & Alessandro Michelotti & Renato Iannelli & Isabella Pecorini, 2024. "Influence of Aeration Rate on Uncoupled Fed Mixed Microbial Cultures for Polyhydroxybutyrate Production," Sustainability, MDPI, vol. 16(7), pages 1-13, April.
    2. Jia, Tongtong & Wang, Zaizhao & Shan, Haiqiang & Liu, Yuanfeng & Gong, Lei, 2017. "Effect of nanoscale zero-valent iron on sludge anaerobic digestion," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 190-195.
    3. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Wu, Haijun & Wang, Biao & Geng, Fanhui & Zhang, Kai & Lv, Quanwei & Xu, Jian, 2025. "Alkaline tetrahydrofurfuryl alcohol pretreatment technology to achieve value-added co-liquefaction of biomass," Renewable Energy, Elsevier, vol. 239(C).
    3. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    4. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    6. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    7. Yan-Jhang Chen & Tang-Yu Fan & Li-Pang Wang & Ta-Wui Cheng & Shiao-Shing Chen & Min-Hao Yuan & Shikun Cheng, 2020. "Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    8. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    9. Cerrillo, Míriam & Guivernau, Miriam & Burgos, Laura & Riau, Victor & Bonmatí, August, 2025. "Nano zerovalent iron boosts methane content in biogas and reshapes microbial communities in long-term anaerobic digestion of pig slurry," Renewable Energy, Elsevier, vol. 239(C).
    10. Inesa Kniuipytė & Marius Praspaliauskas & Jonė Venclovienė & Jūratė Žaltauskaitė, 2023. "Soil Remediation after Sewage Sludge or Sewage Sludge Char Application with Industrial Hemp and Its Potential for Bioenergy Production," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Smoliński, Adam & Tong, Yen Wah & Mohamed Rasmey, Abdel-Hamied & Liu, Ronghou, 2025. "Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    13. Semiyaga, Swaib & Okure, Mackay A.E. & Niwagaba, Charles B. & Katukiza, Alex Y. & Kansiime, Frank, 2015. "Decentralized options for faecal sludge management in urban slum areas of Sub-Saharan Africa: A review of technologies, practices and end-uses," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 109-119.
    14. Yi Xiao & Xiaohan Ren & Juan Chen, 2022. "Effect of Magnesium Additives on Phosphorous Recovery during Sewage Sludge Combustion and Further Improvement of Bioavailable Phosphorous," Energies, MDPI, vol. 15(3), pages 1-13, January.
    15. Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
    16. Chen, Zhidong & Hou, Yichen & Liu, Mingyu & Zhang, Guoqiang & Zhang, Kai & Zhang, Dongke & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2022. "Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes," Applied Energy, Elsevier, vol. 327(C).
    17. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    18. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    19. Yongpeng Luo & Shenxu Bao & Siyuan Yang & Yimin Zhang & Yang Ping & Chao Lin & Pan Yang, 2021. "Characterization, Spatial Variation and Management Strategy of Sewer Sediments Collected from Combined Sewer System: A Case Study in Longgang District, Shenzhen," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    20. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3247-:d:1628672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.