IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i14p7687-d597530.html
   My bibliography  Save this article

Characterization, Spatial Variation and Management Strategy of Sewer Sediments Collected from Combined Sewer System: A Case Study in Longgang District, Shenzhen

Author

Listed:
  • Yongpeng Luo

    (School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Shenxu Bao

    (School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Siyuan Yang

    (School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Yimin Zhang

    (School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
    State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Yang Ping

    (Shenzhen Water Planning and Design Institute Co., Ltd., Shenzhen 518116, China)

  • Chao Lin

    (Shenzhen Water Planning and Design Institute Co., Ltd., Shenzhen 518116, China)

  • Pan Yang

    (Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, 205 N Mathews Ave, Urbana, IL 61820, USA)

Abstract

In the urban drainage system, the formation of sewer sediments is inevitable, and the removal of sewer sediments is necessary for system maintenance. Disposal of arisings from sewer sediment removal is becoming a serious environmental issue. The current knowledge of sewer sediments is limited, which is restrained to sewer sediments management. To better understand this municipal waste, the sewer sediments of a combined sewer system in Longgang District, Shenzhen were collected and characterized, and the spatial distribution characteristics of contaminants were analyzed. Based on the bivariate correlation analysis, it is found that many contaminants in sewer sediments have a strong relationship with spatial variables. Compared to the sewer sediments in industrial areas, those in residential areas contain higher concentrations of Hg and phosphorus. The sediments in the sewage conduit also contain more organic matter (OM), phosphorus, Cu, and Ni, and the sediments in the rainwater conduit contain a higher concentration of Cd. Moreover, the sediments produced in different catchments also show huge differences in the content of contaminants. These spatial distribution characteristics may provide help for the further classification of sewer sediments, thereby making the disposal of sediments more targeted. According to the local standards of sludge disposal, land application and incineration are not suitable for managing sewer sediments due to the low OM content and poor lower heating value (LHV). Although sanitary landfill is feasible for sewer sediments disposal, the complicated composition of sewer sediments still poses the risk of polluting the surrounding environment. The management of sewer sediments via the production of building materials is a promising technical route that can avoid the migration of hazardous contaminants and produce valuable products. This study may improve our understanding of sewer sediments and provide a reliable recommendation for sewer sediment management.

Suggested Citation

  • Yongpeng Luo & Shenxu Bao & Siyuan Yang & Yimin Zhang & Yang Ping & Chao Lin & Pan Yang, 2021. "Characterization, Spatial Variation and Management Strategy of Sewer Sediments Collected from Combined Sewer System: A Case Study in Longgang District, Shenzhen," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7687-:d:597530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/14/7687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/14/7687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaning Wang & Jinhu Yang & Hang Xu & Chenwei Liu & Zhen Shen & Kai Hu, 2019. "Preparation of Ceramsite Based on Waterworks Sludge and Its Application as Matrix in Constructed Wetlands," IJERPH, MDPI, vol. 16(15), pages 1-13, July.
    2. Olga Anne & Tatjana Paulauskiene, 2021. "The Assessment of the Sewage and Sludge Contamination by Phthalate Acid Esters (PAEs) in Eastern Europe Countries," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    3. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    4. Baoling Duan & Wuping Zhang & Haixia Zheng & Chunyan Wu & Qiang Zhang & Yushan Bu, 2017. "Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China," IJERPH, MDPI, vol. 14(7), pages 1-12, July.
    5. Dong Lv & Tianle Zhu & Runwei Liu & Xinghua Li & Yuan Zhao & Ye Sun & Hongmei Wang & Fan Zhang & Qinglin Zhao, 2018. "Effects of Co-Processing Sewage Sludge in the Cement Kiln on PAHs, Heavy Metals Emissions and the Surrounding Environment," IJERPH, MDPI, vol. 15(4), pages 1-12, April.
    6. Seongmin Kang & Joonyoung Roh & Eui-Chan Jeon, 2021. "Estimating the Characteristics and Emission Factor of Ammonia from Sewage Sludge Incinerator," IJERPH, MDPI, vol. 18(5), pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    3. Jolita Kruopienė & Miglė Žiukaitė, 2022. "Situation Analysis and the Potential for Circularity of the Wastewater Sector in Lithuania," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    4. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    6. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    7. Yan-Jhang Chen & Tang-Yu Fan & Li-Pang Wang & Ta-Wui Cheng & Shiao-Shing Chen & Min-Hao Yuan & Shikun Cheng, 2020. "Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    8. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    9. Inesa Kniuipytė & Marius Praspaliauskas & Jonė Venclovienė & Jūratė Žaltauskaitė, 2023. "Soil Remediation after Sewage Sludge or Sewage Sludge Char Application with Industrial Hemp and Its Potential for Bioenergy Production," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    10. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    11. Semiyaga, Swaib & Okure, Mackay A.E. & Niwagaba, Charles B. & Katukiza, Alex Y. & Kansiime, Frank, 2015. "Decentralized options for faecal sludge management in urban slum areas of Sub-Saharan Africa: A review of technologies, practices and end-uses," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 109-119.
    12. Yi Xiao & Xiaohan Ren & Juan Chen, 2022. "Effect of Magnesium Additives on Phosphorous Recovery during Sewage Sludge Combustion and Further Improvement of Bioavailable Phosphorous," Energies, MDPI, vol. 15(3), pages 1-13, January.
    13. Chen, Zhidong & Hou, Yichen & Liu, Mingyu & Zhang, Guoqiang & Zhang, Kai & Zhang, Dongke & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2022. "Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes," Applied Energy, Elsevier, vol. 327(C).
    14. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    15. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    16. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    17. Wu, Xiaoyan & Tian, Yu & Zhou, Xiaoliang & Kong, Xiaowei & Zhang, Jun & Zuo, Wei & Wang, Dezhen & Ye, Xuesong, 2016. "Performance and long-term stability of nickel/yttria-stabilized zirconia anode-supported solid oxide fuel cell in simulated biosyngas," Energy, Elsevier, vol. 114(C), pages 1-9.
    18. Ren, Jingzheng & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & He, Chang & Pan, Ming & Sun, Lu, 2017. "Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 384-396.
    19. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    20. Budzianowski, Wojciech M. & Nantongo, Irene & Bamutura, Cleus & Rwema, Michel & Lyambai, Martin & Abimana, Colette & Akumu, Eric O. & Alokore, Yunus & Babalola, Samuel O. & Gachuri, Amon K.K. & Hefney, 2018. "Business models and innovativeness of potential renewable energy projects in Africa," Renewable Energy, Elsevier, vol. 123(C), pages 162-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7687-:d:597530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.