IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p8996-d1768501.html
   My bibliography  Save this article

The Role of the Built Environment in Achieving Sustainable Development: A Life Cycle Cost Perspective

Author

Listed:
  • Ivona Gudac Hodanić

    (Expono d.o.o., 51000 Rijeka, Croatia)

  • Hrvoje Krstić

    (Faculty of Civil Engineering, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia)

  • Ivan Marović

    (Faculty of Civil Engineering, University in Rijeka, 51000 Rijeka, Croatia)

  • Martina Gudac Cvelic

    (Expono d.o.o., 51000 Rijeka, Croatia)

Abstract

Life cycle cost (LCC) analysis has become a key tool for evaluating the long-term economic and environmental performance of built assets, yet its application in marinas and marine infrastructure remains underdeveloped. This review provides the first structured attempt to apply LCC to marina infrastructure, addressing the lack of sector-specific models for pontoons, mooring systems, and marina operations. It also synthesizes research on LCC methodologies, challenges, and emerging trends relevant to coastal facilities, with a particular focus on pontoons, mooring systems, and marina management practices. Studies reveal persistent barriers to effective implementation, including fragmented data systems, inconsistent regulations, and limited sector-specific tools. Existing models, largely adapted from other construction contexts, often overlook the unique technical, environmental, and operational demands of marine assets. The review critically examines international standards, procurement frameworks, and methodological approaches, highlighting opportunities to integrate sustainability considerations and address gaps in cost forecasting. It also identifies the need for standardized data collection practices and risk-based maintenance strategies tailored to harsh marine environments. By mapping current knowledge and methodological limitations, this work provides a foundation for developing more accurate, sector-specific LCC models and guidance. This literature review contributes to the advancement of sustainable coastal infrastructure planning by consolidating scattered research, emphasizing knowledge gaps, and outlining priorities for future studies, supporting policymakers, practitioners, and researchers seeking to optimize investment decisions in marinas and related facilities.

Suggested Citation

  • Ivona Gudac Hodanić & Hrvoje Krstić & Ivan Marović & Martina Gudac Cvelic, 2025. "The Role of the Built Environment in Achieving Sustainable Development: A Life Cycle Cost Perspective," Sustainability, MDPI, vol. 17(20), pages 1-33, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:8996-:d:1768501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/8996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/8996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferens, Daniel V., 1988. "Software parametric cost estimation: Wave of the future," Engineering Costs and Production Economics, Elsevier, vol. 14(2), pages 157-164, July.
    2. Podofillini, Luca & Zio, Enrico & Vatn, Jørn, 2006. "Risk-informed optimisation of railway tracks inspection and maintenance procedures," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 20-35.
    3. Cromratie Clemons, Sáde K. & Salloum, Coleman R. & Herdegen, Kyle G. & Kamens, Richard M. & Gheewala, Shabbir H., 2021. "Life cycle assessment of a floating photovoltaic system and feasibility for application in Thailand," Renewable Energy, Elsevier, vol. 168(C), pages 448-462.
    4. Goumas, M. G. & Lygerou, V. A. & Papayannakis, L. E., 1999. "Computational methods for planning and evaluating geothermal energy projects," Energy Policy, Elsevier, vol. 27(3), pages 147-154, March.
    5. Assem Al-Hajj & Malcolm Horner, 1998. "Modelling the running costs of buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 16(4), pages 459-470.
    6. Eric Korpi & Timo Ala-Risku, 2008. "Life cycle costing: a review of published case studies," Managerial Auditing Journal, Emerald Group Publishing, vol. 23(3), pages 240-261, March.
    7. Varvara S. Orfanidou & Nikolaos P. Rachaniotis & Giannis T. Tsoulfas & Gregory P. Chondrokoukis, 2023. "Life Cycle Costing Implementation in Green Public Procurement: A Case Study from the Greek Public Sector," Sustainability, MDPI, vol. 15(3), pages 1-15, February.
    8. Eric Korpi & Timo Ala‐Risku, 2008. "Life cycle costing: a review of published case studies," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 23(3), pages 240-261, March.
    9. Richard Kirkham, 2005. "Re-engineering the whole life cycle costing process," Construction Management and Economics, Taylor & Francis Journals, vol. 23(1), pages 9-14.
    10. Yang, Seung-Ie & Frangopol, Dan M. & Kawakami, Yoriko & Neves, Luís C., 2006. "The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 698-705.
    11. Finch, E.F., 1994. "The uncertain role of life cycle costing in the renewable energy debate," Renewable Energy, Elsevier, vol. 5(5), pages 1436-1443.
    12. repec:eme:maj000:02686900810857703 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orlando Durán & Paulo Afonso & Víctor Jiménez & Katty Carvajal, 2023. "Cost of Ownership of Spare Parts under Uncertainty: Integrating Reliability and Costs," Mathematics, MDPI, vol. 11(15), pages 1-23, July.
    2. Xingcheng Gan & Xiaobo Gong & Ji Pei & Giorgio Pavesi & Shouqi Yuan, 2025. "Machine Learning Approaches for Enhancing Energy Efficiency and Stability in Parallel Pumping Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(4), pages 1719-1746, March.
    3. Okasha, Nader M. & Frangopol, Dan M., 2010. "Redundancy of structural systems with and without maintenance: An approach based on lifetime functions," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 520-533.
    4. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    5. Zou, Ganna & Zhang, Shengbo & Gan, Xingqiong & Cheng, Hua, 2025. "How government green procurement incentivises corporate green innovation? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 86(C), pages 1605-1626.
    6. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    8. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    10. Hugo Raposo & José Torres Farinha & Luís Ferreira & Diego Galar, 2018. "Dimensioning reserve bus fleet using life cycle cost models and condition based/predictive maintenance: a case study," Public Transport, Springer, vol. 10(1), pages 169-190, May.
    11. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    12. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    13. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    14. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    15. Timothy Jena & Sakdirat Kaewunruen, 2021. "Life Cycle Sustainability Assessments of an Innovative FRP Composite Footbridge," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    16. Julian Gaus & Sven Wehking & Andreas H. Glas & Michael Eßig, 2022. "Economic Sustainability by Using Life Cycle Cost Information in the Buying Center: Insights from the Public Sector," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    17. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    18. Shakirah Mohd Saad & Rosliza Md Zani & Abd Rasyid Ramli, 2025. "Navigating Malaysia’s Green Public Procurement Policy: A Sustainability-Driven Review," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(5), pages 330-343, May.
    19. María Dolores Mainar-Toledo & Maryori Díaz-Ramírez & Snorri J. Egilsson & Claudio Zuffi & Giampaolo Manfrida & Héctor Leiva, 2023. "Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    20. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:8996-:d:1768501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.