IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8166-d1746799.html
   My bibliography  Save this article

Mapping the Transmission of Carbon Emission Responsibility Among Multiple Regions from the Perspective of the Energy Supply Chain: EA-MRIO Method and a Case Study of China

Author

Listed:
  • Yuan Yuan

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Laboratory for Low Carbon Energy, Tsinghua University, Beijing 100084, China)

  • Yunlong Zhao

    (China Electric Power Planning & Engineering Institute, Beijing 100120, China)

  • Honghua Yang

    (China Electric Power Research Institute, State Grid Corporation of China, Beijing 100192, China)

  • Chin Hao Chong

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Laboratory for Low Carbon Energy, Tsinghua University, Beijing 100084, China
    School of Management, Guilin University of Aerospace Technology, Guilin 541004, China)

  • Linwei Ma

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Laboratory for Low Carbon Energy, Tsinghua University, Beijing 100084, China)

  • Shiyan Chang

    (Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Laboratory for Low Carbon Energy, Tsinghua University, Beijing 100084, China
    Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

  • Zheng Li

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Laboratory for Low Carbon Energy, Tsinghua University, Beijing 100084, China)

Abstract

In low-carbon transition policy management, rationally determining the energy-related carbon emission responsibilities (ERCERs) across multiple regions is a fundamental issue. Reasonable allocation must take into account regional heterogeneities, such as energy endowments, economic development levels, industrial structures, and complex interconnections within the multi-regional energy supply chain. Previous studies mostly analyzed it via the multi-regional input–output (MRIO) model on the energy-consumption side, often neglecting the regional distribution of energy production and inter-regional energy transport on the energy-production side. This limitation risks a mismatch between energy policies and economic policies in practical policy governance. To address this gap, this study develops an energy allocation-induced MRIO (EA-MRIO) method integrating energy allocation analysis and an MRIO model to trace ERCER transmissions holistically across the entire energy supply chain. The framework covers seven stages including energy supply, inter-regional energy transport, direct energy consumption of end-use sectors, inter-regional intermediate products input and output, final products supply, inter-regional final products transport, and final demand, applied to a case study of China’s 31 provinces in 2017. Results show that ERCERs mainly transfer from western and northern regions to eastern and southern coastal areas: ERCERs embodied by energy production in western and northern provinces first flow to northern coastal provinces (main intermediate products producers), then to eastern and southern coastal provinces (main final products producers), with 23% ultimately attributed to exports. These findings call for allocating ERCERs based on different subregions’ roles within the national energy–economic system to facilitate more equitable and effective carbon reduction policymaking.

Suggested Citation

  • Yuan Yuan & Yunlong Zhao & Honghua Yang & Chin Hao Chong & Linwei Ma & Shiyan Chang & Zheng Li, 2025. "Mapping the Transmission of Carbon Emission Responsibility Among Multiple Regions from the Perspective of the Energy Supply Chain: EA-MRIO Method and a Case Study of China," Sustainability, MDPI, vol. 17(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8166-:d:1746799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoqian Liu & Javier Cifuentes‐Faura & Wenming Shi & Chunhui Tian, 2025. "Exploring the Carbon Emission Transfers Pathway to Address the Issue of Sustainable Development: A Multi‐Regional Input–Output Perspective," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(4), pages 5676-5703, August.
    2. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    3. Chong, ChinHao & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou & Li, Xu & Song, Shizhong, 2017. "LMDI decomposition of energy consumption in Guangdong Province, China, based on an energy allocation diagram," Energy, Elsevier, vol. 133(C), pages 525-544.
    4. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    5. Yunlong Zhao & Linwei Ma & Zheng Li & Weidou Ni, 2022. "A Calculation and Decomposition Method Embedding Sectoral Energy Structure for Embodied Carbon: A Case Study of China’s 28 Sectors," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    6. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    7. Chen, Weiming & Lei, Yalin & Feng, Kuishuang & Wu, Sanmang & Li, Li, 2019. "Provincial emission accounting for CO2 mitigation in China: Insights from production, consumption and income perspectives," Applied Energy, Elsevier, vol. 255(C).
    8. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    9. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    10. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    11. Yingying Du & Haibin Liu & Hui Huang, 2024. "Bibliometric Analysis of Research Progress and Trends on Carbon Emission Responsibility Accounting," Sustainability, MDPI, vol. 16(9), pages 1-23, April.
    12. Xuecheng Wang & Xu Tang & Baosheng Zhang & Benjamin C. McLellan & Yang Lv, 2018. "Provincial Carbon Emissions Reduction Allocation Plan in China Based on Consumption Perspective," Sustainability, MDPI, vol. 10(5), pages 1-23, April.
    13. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Fang, Guochang & Huang, Meng & Zhang, Wenbin & Tian, Lixin, 2024. "Exploring global embodied carbon emissions transfer network—An analysis based on national responsibility," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    15. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunli Jin & Qiaoqiao Zhu & Hui Sun, 2023. "Temporal and Spatial Divergence of Embodied Carbon Emissions Transfer and the Drivers—Evidence from China’s Domestic Trade," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    2. Rivera-Niquepa, Juan David & De Oliveira-De Jesus, Paulo M. & Yusta, Jose M., 2025. "Trend-based multi-period decomposition and decoupling methodology for energy-related carbon dioxide emissions: A case study of Portugal," Utilities Policy, Elsevier, vol. 93(C).
    3. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    4. Román-Collado, Rocío & Casado Ruíz, Virginia, 2024. "Key effects contributing to changes in energy imports in the EU-27 between 2000 and 2020: A decomposition analysis based on the Sankey diagram," Energy Economics, Elsevier, vol. 140(C).
    5. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    6. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    7. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    8. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    9. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    10. Gao, Yuan & Chong, Chin Hao & Liu, Gengyuan & Casazza, Marco & Xiong, Xiaoping & Liu, Bojie & Zhou, Xuanru & Zhou, Xiaoyong & Li, Zheng & Ni, Weidou & Hao, Yan & Ma, Linwei, 2024. "Identification of carbon responsibility factors based on energy consumption from 2005 to 2020 in China," Energy, Elsevier, vol. 296(C).
    11. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    12. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
    13. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    14. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    16. Wen, Wen & Feng, Cuiyang & Zhou, Hao & Zhang, Li & Wu, Xiaohui & Qi, Jianchuan & Yang, Xuechun & Liang, Yuhan, 2021. "Critical provincial transmission sectors for carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    18. Yuancheng Lin & Junlong Tang & Jing Guo & Shidong Wu & Zheng Li, 2025. "Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches," Energies, MDPI, vol. 18(4), pages 1-29, February.
    19. Yatian Liu & Hongchang Li & Qiming Wang, 2025. "The Determinants and Spatial Interaction of Regional Carbon Transfer: The Perspective of Dependence," Land, MDPI, vol. 14(7), pages 1-27, June.
    20. Zhang, Kun & Xue, Mei-Mei & Feng, Kuishuang & Liang, Qiao-Mei, 2019. "The economic effects of carbon tax on China’s provinces," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 784-802.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8166-:d:1746799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.