IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12239-d673148.html
   My bibliography  Save this article

A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams

Author

Listed:
  • Chinhao Chong

    (Tsinghua-BP Clean Energy Research and Education Centre, State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Xi Zhang

    (National Center for Climate Change Strategy and International Cooperation, Beijing 100035, China)

  • Geng Kong

    (Tsinghua-BP Clean Energy Research and Education Centre, State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    TCL Technology Group, Shenzhen 518052, China)

  • Linwei Ma

    (Tsinghua-BP Clean Energy Research and Education Centre, State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Zheng Li

    (Tsinghua-BP Clean Energy Research and Education Centre, State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Weidou Ni

    (Tsinghua-BP Clean Energy Research and Education Centre, State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Eugene-Hao-Chen Yu

    (Tsinghua-BP Clean Energy Research and Education Centre, State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

The input–output table and input–output method have been widely used to understand complex economic structures and are often used in cross-disciplinary research between economics and other disciplines, such as analysis of embodied energy, carbon footprints, the water–food nexus, etc. However, when researchers present these results to audiences, especially policymakers, they often lack an effective visualization tool to present (1) the full picture of the input–output table; (2) the complicated upstream–downstream nexus, and (3) the input–output relationships between the economic sectors. Therefore, a better visualization method is developed to solve this problem. We propose mapping an input–output table into a Sankey diagram, a so-called monetary allocation Sankey diagram. We first designed the mapping structure of a monetary allocation Sankey diagram according to the general structure of an economic monetary input–output table to establish the correspondence nexus between the table and diagram. We used China as a case study to demonstrate the usage of the monetary allocation Sankey diagram. The purpose of the monetary allocation Sankey diagram is to help people understand the input–output table in a short time and quickly grasp the big picture of the economic system. To verify whether this goal is achieved, we presented and applied these Sankey diagrams on different occasions and obtained evaluations from scholars from different academic backgrounds. The evaluation shows that the monetary allocation Sankey diagram is not only a visualization result of the input–output table but also a miniature model of the economic system, which allows people to “truly observe” the complex input–output relationship and upstream–downstream nexus in the economic system. Researchers can quickly grasp the main features of the economic system by observing the miniature model, or they can use this miniature model as an auxiliary tool to introduce the economic system and its inherent complex relationships to the audience.

Suggested Citation

  • Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12239-:d:673148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lupton, R.C. & Allwood, J.M., 2017. "Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 141-151.
    2. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
    3. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    4. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    5. Ma, Linwei & Allwood, Julian M. & Cullen, Jonathan M. & Li, Zheng, 2012. "The use of energy in China: Tracing the flow of energy from primary source to demand drivers," Energy, Elsevier, vol. 40(1), pages 174-188.
    6. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    7. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    8. Chong, ChinHao & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou & Li, Xu & Song, Shizhong, 2017. "LMDI decomposition of energy consumption in Guangdong Province, China, based on an energy allocation diagram," Energy, Elsevier, vol. 133(C), pages 525-544.
    9. Chinhao Chong & Weidou Ni & Linwei Ma & Pei Liu & Zheng Li, 2015. "The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use," Energies, MDPI, vol. 8(4), pages 1-39, April.
    10. Craig Langston & Edwin H. W. Chan & Esther H. K. Yung, 2018. "Hybrid Input-Output Analysis of Embodied Carbon and Construction Cost Differences between New-Build and Refurbished Projects," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    11. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    12. Wu, Jinxi & Yang, Jie & Ma, Linwei & Li, Zheng & Shen, Xuesi, 2016. "A system analysis of the development strategy of iron ore in China," Resources Policy, Elsevier, vol. 48(C), pages 32-40.
    13. Gasim, Anwar A., 2015. "The embodied energy in trade: What role does specialization play?," Energy Policy, Elsevier, vol. 86(C), pages 186-197.
    14. Mu, Hailin & Li, Huanan & Zhang, Ming & Li, Miao, 2013. "Analysis of China's carbon dioxide flow for 2008," Energy Policy, Elsevier, vol. 54(C), pages 320-326.
    15. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    16. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    17. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Mukuve, Feriha Mugisha & Fenner, Richard A., 2015. "The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda," Food Policy, Elsevier, vol. 51(C), pages 24-37.
    19. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    20. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    21. Qingjian Zhao & Zuomin Wen & Anne Toppinen, 2018. "Constructing the Embodied Carbon Flows and Emissions Landscape from the Perspective of Supply Chain," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    22. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
    23. Xu Li & Chinhao Chong & Linwei Ma & Pei Liu & Xuesi Shen & Zibo Jia & Cheng Wang & Zheng Li & Weidou Ni, 2018. "Coordinating the Dynamic Development of Energy and Industry in Composite Regions: An I-SDOP Analysis of the BTH Region," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    24. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    3. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    4. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    5. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    7. Xu Li & Chinhao Chong & Linwei Ma & Pei Liu & Xuesi Shen & Zibo Jia & Cheng Wang & Zheng Li & Weidou Ni, 2018. "Coordinating the Dynamic Development of Energy and Industry in Composite Regions: An I-SDOP Analysis of the BTH Region," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    8. Honghua Yang & Linwei Ma & Zheng Li, 2020. "A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015," Energies, MDPI, vol. 13(8), pages 1-24, April.
    9. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    10. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    11. Yunlong Zhao & Linwei Ma & Zheng Li & Weidou Ni, 2022. "A Calculation and Decomposition Method Embedding Sectoral Energy Structure for Embodied Carbon: A Case Study of China’s 28 Sectors," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    12. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    14. Song, Xiaoxin & Li, Rongrong, 2023. "Tracing and excavating critical paths and sectors for embodied energy consumption in global supply chains: A case study of China," Energy, Elsevier, vol. 284(C).
    15. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    16. Soundararajan, Kamal & Ho, Hiang Kwee & Su, Bin, 2014. "Sankey diagram framework for energy and exergy flows," Applied Energy, Elsevier, vol. 136(C), pages 1035-1042.
    17. Paoli, Leonardo & Cullen, Jonathan, 2020. "Technical limits for energy conversion efficiency," Energy, Elsevier, vol. 192(C).
    18. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
    19. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    20. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12239-:d:673148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.