IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2093-d153388.html
   My bibliography  Save this article

Coordinating the Dynamic Development of Energy and Industry in Composite Regions: An I-SDOP Analysis of the BTH Region

Author

Listed:
  • Xu Li

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Chinhao Chong

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Linwei Ma

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Pei Liu

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China)

  • Xuesi Shen

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Zibo Jia

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Cheng Wang

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
    Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, Tsinghua University, Beijing 100084, China)

  • Zheng Li

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China)

  • Weidou Ni

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China)

Abstract

In various regions of the world, there is an urgent need to address energy challenges by accelerating the transformation of energy and industrial systems. The problem is quite complex in rapidly developing composite regions, with the necessity to coordinate the dynamic development of energy and industry in several heterogeneous subregions. Through a typical case study on the Beijing–Tianjin–Hebei (BTH) region, this study attempts to form a referable methodology for the coordinated development of energy and industry for the sustainable development of rapidly developing composite regions. The concept of an Integrated strategy of Sustainable development objectives, Decision-making systems, Operation systems, and Physical systems (I-SDOP) is proposed to describe the multilayer dynamics of complex energy and industrial systems. A five-step I-SDOP analysis is conducted to determine an integrated strategy for the coordinated development of energy and industry in the BTH region, based on the analysis of its sustainable development objectives, decision-making systems, operation systems, and physical systems. The results indicate the importance of innovation sources and extensive communications to promote market reform and engineering projects that fulfill the strong political wills and strategic plans of China’s central government.

Suggested Citation

  • Xu Li & Chinhao Chong & Linwei Ma & Pei Liu & Xuesi Shen & Zibo Jia & Cheng Wang & Zheng Li & Weidou Ni, 2018. "Coordinating the Dynamic Development of Energy and Industry in Composite Regions: An I-SDOP Analysis of the BTH Region," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2093-:d:153388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Linwei & Fu, Feng & Li, Zheng & Liu, Pei, 2012. "Oil development in China: Current status and future trends," Energy Policy, Elsevier, vol. 45(C), pages 43-53.
    2. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Yan & Su, Meirong & Ulgiati, Sergio, 2016. "Prevention and control policy analysis for energy-related regional pollution management in China," Applied Energy, Elsevier, vol. 166(C), pages 292-300.
    3. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
    4. Ma, Linwei & Allwood, Julian M. & Cullen, Jonathan M. & Li, Zheng, 2012. "The use of energy in China: Tracing the flow of energy from primary source to demand drivers," Energy, Elsevier, vol. 40(1), pages 174-188.
    5. Chinhao Chong & Weidou Ni & Linwei Ma & Pei Liu & Zheng Li, 2015. "The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use," Energies, MDPI, vol. 8(4), pages 1-39, April.
    6. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    7. Wu, Jinxi & Yang, Jie & Ma, Linwei & Li, Zheng & Shen, Xuesi, 2016. "A system analysis of the development strategy of iron ore in China," Resources Policy, Elsevier, vol. 48(C), pages 32-40.
    8. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
    2. Yunlong Zhao & Linwei Ma & Zheng Li & Weidou Ni, 2022. "A Calculation and Decomposition Method Embedding Sectoral Energy Structure for Embodied Carbon: A Case Study of China’s 28 Sectors," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    3. Honghua Yang & Linwei Ma & Zheng Li, 2020. "A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015," Energies, MDPI, vol. 13(8), pages 1-24, April.
    4. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    3. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
    4. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    5. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    6. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    7. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    8. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    9. Honghua Yang & Linwei Ma & Zheng Li, 2020. "A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015," Energies, MDPI, vol. 13(8), pages 1-24, April.
    10. Chinhao Chong & Weidou Ni & Linwei Ma & Pei Liu & Zheng Li, 2015. "The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use," Energies, MDPI, vol. 8(4), pages 1-39, April.
    11. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    12. Soundararajan, Kamal & Ho, Hiang Kwee & Su, Bin, 2014. "Sankey diagram framework for energy and exergy flows," Applied Energy, Elsevier, vol. 136(C), pages 1035-1042.
    13. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
    14. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    15. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    16. Biying Yu & Guangpu Zhao & Runying An, 2019. "Framing the picture of energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1469-1490, December.
    17. Nikolaos Antonakakis & Ioannis Chatziantoniou & George Filis, 2014. "Dynamic Spillovers of Oil Price Shocks and Policy Uncertainty," Department of Economics Working Papers wuwp166, Vienna University of Economics and Business, Department of Economics.
    18. Hughes, Larry & Ranjan, Ashish, 2013. "Event-related stresses in energy systems and their effects on energy security," Energy, Elsevier, vol. 59(C), pages 413-421.
    19. Qin, Ying & Curmi, Elizabeth & Kopec, Grant M. & Allwood, Julian M. & Richards, Keith S., 2015. "China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy," Energy Policy, Elsevier, vol. 82(C), pages 131-143.
    20. Konadu, D. Dennis & Mourão, Zenaida Sobral & Allwood, Julian M. & Richards, Keith S. & Kopec, Grant & McMahon, Richard & Fenner, Richard, 2015. "Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan," Energy Policy, Elsevier, vol. 86(C), pages 328-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2093-:d:153388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.