IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p7158-d1719805.html
   My bibliography  Save this article

Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece

Author

Listed:
  • Ioannis Faraslis

    (Department of Environmental Sciences, University of Thessaly, 41500 Larissa, Greece)

  • Vassiliki Margaritopoulou

    (Management Unit of Parnassos and Oiti National Parks and Protected Areas of Eastern Central Greece, Natural Environment and Climate Change Agency, 35002 Amfiklia, Greece)

  • Christos Christakis

    (Department of Environmental Sciences, University of Thessaly, 41500 Larissa, Greece)

  • Efthimios Providas

    (Department of Environmental Sciences, University of Thessaly, 41500 Larissa, Greece)

Abstract

This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean Natura 2000 Special Protection Area (SPA), and landscape metrics were calculated using Geographic Information System spatial analysis tools. The analysis of metrics showed that the installation of renewable energy parks within the designated protected area negatively affect landscape fragmentation and the absence of carefully defined and evidence-based mitigation measures. The land cover categories that are significantly affected are those considered critical habitats of bird species that have been designated as SPAs. The results of this study highlight the need to integrate, in the National Renewable Energy Spatial Plans, specific biodiversity objectives, such as conservation objectives and the suspension of the installation of photovoltaic parks in certain areas that are important for conservation of biodiversity, in order to ensure the overall sustainability of renewable energy production.

Suggested Citation

  • Ioannis Faraslis & Vassiliki Margaritopoulou & Christos Christakis & Efthimios Providas, 2025. "Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece," Sustainability, MDPI, vol. 17(15), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7158-:d:1719805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/7158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/7158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    2. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    3. Aikaterini Voudouri & Evgenia Chaideftou & Athanassios Sfougaris, 2021. "Topsoil Seed Bank as Feeding Ground for Farmland Birds: A Comparative Assessment in Agricultural Habitats," Land, MDPI, vol. 10(9), pages 1-19, September.
    4. Carolina Perpina Castillo & Boyan Kavalov & Vasco Diogo & Chris Jacobs-Crisioni & Filipe Batista e Silva & Carlo Lavalle, 2018. "Agricultural land abandonment in the EU within 2015-2030," JRC Research Reports JRC113718, Joint Research Centre.
    5. Konstantinos Chontos & Ioannis Tsiripidis, 2023. "Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece)," Land, MDPI, vol. 12(4), pages 1-22, April.
    6. Thomas, Kathryn A. & Jarchow, Christopher J. & Arundel, Terence R. & Jamwal, Pankaj & Borens, Amanda & Drost, Charles A., 2018. "Landscape-scale wildlife species richness metrics to inform wind and solar energy facility siting: An Arizona case study," Energy Policy, Elsevier, vol. 116(C), pages 145-152.
    7. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    8. Mladen Bošnjaković & Robert Santa & Zoran Crnac & Tomislav Bošnjaković, 2023. "Environmental Impact of PV Power Systems," Sustainability, MDPI, vol. 15(15), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    2. Manoj Kumar, Nallapaneni & Chopra, Shauhrat S., 2023. "Integrated techno-economic and life cycle assessment of shared circular business model based blockchain-enabled dynamic grapevoltaic farm for major grape growing states in India," Renewable Energy, Elsevier, vol. 209(C), pages 365-381.
    3. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    4. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    5. Walston, Leroy J. & Li, Yudi & Hartmann, Heidi M. & Macknick, Jordan & Hanson, Aaron & Nootenboom, Chris & Lonsdorf, Eric & Hellmann, Jessica, 2021. "Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States," Ecosystem Services, Elsevier, vol. 47(C).
    6. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    7. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    9. Dohlman, Erik & Maguire, Karen & Davis, Wilma V. & Husby, Megan & Bovay, John & Weber, Catharine & Lee, Yoonjung, 2024. "Trends, Insights, and Future Prospects for Production in Controlled Environment Agriculture and Agrivoltaics Systems," Economic Information Bulletin 340508, United States Department of Agriculture, Economic Research Service.
    10. Pascaris1, Alexis S. & Schelly, Chelsea & Rouleau, Mark & Pearce, Joshua M., 2021. "Do Agrivoltaics Improve Public Support for Solar Photovoltaic Development? Survey Says: Yes!," SocArXiv efasx, Center for Open Science.
    11. Alam, Habeel & Butt, Nauman Zafar, 2024. "How does module tracking for agrivoltaics differ from standard photovoltaics? Food, energy, and technoeconomic implications," Renewable Energy, Elsevier, vol. 235(C).
    12. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    13. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    14. Guarino, Stefania & Buscemi, Alessandro & Chiaruzzi, Christian & Lo Brano, Valerio, 2025. "Modelling and analysis of V-shaped bifacial PV systems for agrivoltaic applications: A Python-based approach for energy optimization," Applied Energy, Elsevier, vol. 389(C).
    15. Jian Chen & Lingjun Wang & Yuanyuan Li, 2022. "Research on Niche Evaluation of Photovoltaic Agriculture in China," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    16. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    18. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    19. Yang Shen & Xiuwu Zhang, 2022. "Study on the Impact of Environmental Tax on Industrial Green Transformation," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    20. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7158-:d:1719805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.