IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6591-d1705158.html
   My bibliography  Save this article

A Systematic Review of Artificial Intelligence (AI) and Machine Learning (ML) in Pharmaceutical Supply Chain (PSC) Resilience: Current Trends and Future Directions

Author

Listed:
  • Shireen Al-Hourani

    (Department of Quantitative Studies, University Canada West, Vancouver, BC V6Z 0E5, Canada)

  • Dua Weraikat

    (Mechanical & Industrial Engineering Department, Rochester Institute of Technology, Dubai Campus, Dubai P.O. Box 341055, United Arab Emirates)

Abstract

The resilience of the pharmaceutical supply chain (PSC) is crucial to ensuring the availability of medical products. However, increasing complexity and logistical bottlenecks have exposed weaknesses within PSC frameworks. These challenges underscore the urgent need for more resilient and intelligent supply chain solutions. Recently, Artificial Intelligence and machine learning (AI/ML) have emerged as transformative technologies to enhance PSC resilience. This study presents a systematic review evaluating the role of AI/ML in advancing PSC resilience and their applications across PSC functions. A comprehensive search of five academic databases (Scopus, the Web of Science, IEEE Xplore, PubMed, and EMBASE) identified 89 peer-reviewed studies published between 2019 and 2025. PRISMA 2020 guidelines were implemented, resulting in a final dataset of 32 studies. In addition to analyzing applications, this study identifies the AI/ML grouped into five main categories, providing a clearer understanding of their impact on PSC resilience. The findings reveal that despite AI/ML’s promise, significant research gaps persist. Particularly, AI/ML-driven regulatory compliance and real-time supplier collaboration remain underexplored. Over 59.3% of studies fail to address regulatory frameworks and ethical considerations. In addition, major challenges emerge such as the limited real-world deployment of AI/ML-driven solutions and the lack of managerial impacts on PSC resilience. This study emphasizes the need for stronger regulatory frameworks, broader empirical validation, and AI/ML-driven predictive modeling. This study proposes recommendations for future research to foster more efficient, transparent and ethical PSCs capable of navigating the complexities of global healthcare.

Suggested Citation

  • Shireen Al-Hourani & Dua Weraikat, 2025. "A Systematic Review of Artificial Intelligence (AI) and Machine Learning (ML) in Pharmaceutical Supply Chain (PSC) Resilience: Current Trends and Future Directions," Sustainability, MDPI, vol. 17(14), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6591-:d:1705158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6591/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6591-:d:1705158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.