IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6104-d1694113.html
   My bibliography  Save this article

Research on the Measurement and Enhancement Pathways of the Coupled and Coordinated Development of Digitalization and Greening in the Energy Industry

Author

Listed:
  • Peng Zhang

    (School of Economics and Management, Xi Hang University, Xi’an 710077, China)

  • Jun Liu

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

  • Lihong Guo

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

  • Xiaofei Wang

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

The convergence of intelligent computational innovations—exemplified by cognitive intelligence—into the real economy is fundamentally transforming traditional industries and driving high-quality development. As a cornerstone of national economic growth, the energy sector faces mounting pressure to meet demands for green, low-carbon, and sustainable development, particularly under “dual carbon” targets and tightening regulatory frameworks. This study examines how digital transformation in this sector facilitates or impedes carbon emission reduction and green growth. Focusing on five key energy subsectors, including coal mining and processing, a coupling coordination model assesses the interaction between digitalization and greening. Utilizing panel data spanning from 2014 to 2023, the study systematically evaluates the level of digital–green coordination across the sector. The results indicate notable inter-sectoral variation, alongside a consistent upward trend in the overall coupling coordination, reaching moderate to high levels. These findings offer critical strategic insights for policymakers and energy enterprises seeking to harmonize digital innovation with green transition goals. The empirical evidence underscores the potential of next-generation technologies to expedite intelligent system upgrades, embed green development practices, and enhance enterprise-level carbon reduction and sustainability performance.

Suggested Citation

  • Peng Zhang & Jun Liu & Lihong Guo & Xiaofei Wang, 2025. "Research on the Measurement and Enhancement Pathways of the Coupled and Coordinated Development of Digitalization and Greening in the Energy Industry," Sustainability, MDPI, vol. 17(13), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6104-:d:1694113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florin Mihai & Ofelia Ema Aleca & Andrei Stanciu & Mirela Gheorghe & Mirela Stan, 2022. "Digitalization—The Engine of Sustainability in the Energy Industry," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    3. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2024. "Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity," Energies, MDPI, vol. 17(5), pages 1-17, March.
    4. Jinxiang Zang & Neilson Teruki & Sharon Yong Yee Ong & Yan Wang, 2025. "Can Enterprise Digitalization Promote Green Technological Innovation? Evidence from China’s Manufacturing Sector," Sustainability, MDPI, vol. 17(3), pages 1-18, February.
    5. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali & Mahendra Dev, S., 2017. "Sustainable energy security for India: An assessment of the energy supply sub-system," Energy Policy, Elsevier, vol. 103(C), pages 127-144.
    6. Paola Campana & Riccardo Censi & Roberto Ruggieri & Carlo Amendola, 2025. "Smart Grids and Sustainability: The Impact of Digital Technologies on the Energy Transition," Energies, MDPI, vol. 18(9), pages 1-16, April.
    7. David J. Teece, 2007. "Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance," Strategic Management Journal, Wiley Blackwell, vol. 28(13), pages 1319-1350, December.
    8. Shujuan Li & Enyi Zhou & Peng Zhang & Yu Xia, 2022. "A Pollution Prevention Pathway Evaluation Methodology Based on Systematic Collaborative Control," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    9. Liu, Baoliu & Huang, Yujie & Chen, Mengmei & Lan, Zirui, 2024. "Towards sustainability: How does the digital-real integration affect regional green development efficiency?," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 42-59.
    10. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    2. Kindström, Daniel & Ottosson, Mikael, 2016. "Local and regional energy companies offering energy services: Key activities and implications for the business model," Applied Energy, Elsevier, vol. 171(C), pages 491-500.
    3. Faucheux, S. & Nicolaï, I., 2011. "IT for green and green IT: A proposed typology of eco-innovation," Ecological Economics, Elsevier, vol. 70(11), pages 2020-2027, September.
    4. Briglauer, Wolfgang & Köppl-Turyna, Monika & Schwarzbauer, Wolfgang & Bittó, Virág, 2023. "Evaluating the effects of ICT core elements on CO2 emissions: Recent evidence from OECD countries," Telecommunications Policy, Elsevier, vol. 47(8).
    5. Fambeu, Ariel Herbert & Yomi, Patricia Tchawa, 2024. "Do ICTs promote the renewable energy consumption? The moderating effects of economic growth and structural transformation in Africa," International Economics, Elsevier, vol. 180(C).
    6. Cezar-Petre Simion & Cătălin-Alexandru Verdeș & Alexandra-Andreea Mironescu & Florin-Gabriel Anghel, 2023. "Digitalization in Energy Production, Distribution, and Consumption: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    7. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).
    8. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    9. Swen Nadkarni & Reinhard Prügl, 2021. "Digital transformation: a review, synthesis and opportunities for future research," Management Review Quarterly, Springer, vol. 71(2), pages 233-341, April.
    10. Jiatong Yu & Jiajue Wang & Taesoo Moon, 2022. "Influence of Digital Transformation Capability on Operational Performance," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    11. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    12. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Christiana Müller & Stefan Vorbach, 2015. "Enabling Business Model Change: Evidence from High-Technology Firms," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 11(1), pages 53-75.
    14. Muhammad Farooq Islam & Ozge Can, 2024. "Integrating digital and sustainable entrepreneurship through business models: a bibliometric analysis," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 14(1), pages 1-18, December.
    15. Francisco Javier Forcadell & Fernando Úbeda, 2022. "Individual entrepreneurial orientation and performance: the mediating role of international entrepreneurship," International Entrepreneurship and Management Journal, Springer, vol. 18(2), pages 875-900, June.
    16. Jing, Peng & Li, Shuohan & Wang, Minglu, 2025. "Digital empowerment, industry chain integration and corporate energy efficiency," Energy Economics, Elsevier, vol. 145(C).
    17. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    18. FeCheng Ma & Farhan Khan & Kashif Ullah Khan & Si XiangYun, 2021. "Investigating the Impact of Information Technology, Absorptive Capacity, and Dynamic Capabilities on Firm Performance: An Empirical Study," SAGE Open, , vol. 11(4), pages 21582440211, November.
    19. Jonathan M. Lee, 2015. "The Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing," Working Papers 15-12, Center for Economic Studies, U.S. Census Bureau.
    20. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6104-:d:1694113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.