Author
Listed:
- Francisco Gustavo Bautista Carrillo
(Programa de Doctorado en Derecho y Sociedad, Universidad a Distancia de Madrid, 28040 Collado-Villalba, Spain)
- Daniel Arias-Aranda
(Departamento de Organización de Empresas I, Universidad de Granada, 18071 Granada, Spain)
Abstract
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, machine learning, robotics, additive manufacturing, autonomous robots, and generative AI. Sequence analysis reveals five distinct adoption profiles: data-centric foundations, automation pioneers, holistic integrators, cautious adopters, and product-centric innovators. Our results show that these adoption pathways differentially impact sustainability outcomes such as circular material innovation, energy transition, operational eco-efficiency, and emissions reduction. Mediation analysis indicates that data orchestration capabilities significantly enhance resource productivity in holistic integrators, generative design competencies accelerate biomaterial innovation in product-centric innovators, and cyber-physical integration reduces lifecycle emissions in automation pioneers. By highlighting how temporal complementarities among technologies shape sustainability performance, this research advances dynamic capabilities theory and emphasizes the path-dependent nature of sustainable innovation. The findings provide practical guidance for firms to align digital transformation with sustainability objectives and offer policymakers insights into designing timely support mechanisms for industrial transitions. This work bridges innovation timing with ecological modernization, contributing a new understanding of capability development for sustainable value creation.
Suggested Citation
Francisco Gustavo Bautista Carrillo & Daniel Arias-Aranda, 2025.
"Technological Adoption Sequences and Sustainable Innovation Performance: A Longitudinal Analysis of Optimal Pathways,"
Sustainability, MDPI, vol. 17(13), pages 1-24, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:13:p:5719-:d:1684268
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5719-:d:1684268. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.