IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5666-d1683145.html
   My bibliography  Save this article

Influence Graph-Based Method for Sustainable Energy Systems

Author

Listed:
  • Nof Yasir

    (Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA)

  • Ying Huang

    (Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA)

  • Di Wu

    (Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA)

Abstract

To reduce carbon emissions from fossil fuel generators in sustainable energy systems, an option is increasing the integration of gas-fired generators into the power system. The increasing reliance on natural gas for electricity generation has strengthened the interdependence between the electric power network and the natural gas infrastructure within the Integrated Power and Gas System (IPGS). This strengthened interdependence increases the risk that disruptions originating in one system may propagate to the other, potentially leading to extensive cascading failures throughout the IPGS. Ensuring the reliability of critical energy infrastructure is vital for sustainable development. This paper proposes a vulnerability assessment method for the IPGS using an influence graph, which can be formulated based on fault chain theory to capture the interactions among failed components in the IPGS. With the influence graph, eigenvector centrality is used to pinpoint the critical components in the IPGS. The proposed methodology is validated using 39-bus 29-node IPGS through the Scenario Analysis Interface for Energy Systems (SAInt) software version 3.5.17.7. Results show that the proposed method has effectively identified the most critical branches in the IPGS, which play a key role in initiating cascading failures. These insights contribute to enhancing the resilience and sustainability of interconnected energy systems.

Suggested Citation

  • Nof Yasir & Ying Huang & Di Wu, 2025. "Influence Graph-Based Method for Sustainable Energy Systems," Sustainability, MDPI, vol. 17(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5666-:d:1683145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. You Zhou & Chuan He, 2022. "A Review on Reliability of Integrated Electricity-Gas System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    2. Banghua Xie & Changfan Li & Zili Wu & Weiming Chen, 2021. "Topological Modeling Research on the Functional Vulnerability of Power Grid under Extreme Weather," Energies, MDPI, vol. 14(16), pages 1-27, August.
    3. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    4. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    5. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    6. Chopade, Pravin & Bikdash, Marwan, 2016. "New centrality measures for assessing smart grid vulnerabilities and predicting brownouts and blackouts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 29-45.
    7. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    8. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    9. Pradhan, Priodyuti & C.U., Angeliya & Jalan, Sarika, 2020. "Principal eigenvector localization and centrality in networks: Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    10. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    11. Zhao, Yixin & Cai, Baoping & Cozzani, Valerio & Liu, Yiliu, 2025. "Failure dependence and cascading failures: A literature review and research opportunities," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingtao Li & Jianxue Wang & Yao Zhang & Yue Fan & Guojun Bao & Xuebin Wang, 2020. "Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    5. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    6. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    7. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    8. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    9. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    10. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    11. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    12. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    13. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    14. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    15. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    16. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    17. Zhang, Cong & Greenblatt, Jeffery B. & MacDougall, Pamela & Saxena, Samveg & Jayam Prabhakar, Aditya, 2020. "Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States," Applied Energy, Elsevier, vol. 270(C).
    18. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    19. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    20. Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5666-:d:1683145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.