IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5627-d1682139.html
   My bibliography  Save this article

Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints

Author

Listed:
  • Yuzhuo Huang

    (School of Business, Heze University, 2269 Daxue Road, Mudan District, Heze 274021, China)

  • Xiang Li

    (School of Business, Heze University, 2269 Daxue Road, Mudan District, Heze 274021, China)

  • Xiaoqin Guo

    (College of Politics and Law, Heze University, 2269 Daxue Road, Mudan District, Heze 274021, China)

Abstract

Japan’s shift to a super-aged society is reshaping household carbon footprint (HCF) in ways that vary by age, income, and region. Drawing on a two-tier national–prefectural framework, we quantify the influence of demographic shifts on HCF and evaluate inequalities, and project prefectural HCF to 2050 under fixed 2005 technology and consumption baselines. Nationally, emissions follow an inverted-U age curve, peaking at the 50–54 s (2.16 tCO 2 ) and dropping at both the younger and older ends. Carbon inequality—the gap between high- and low-income households—displays the opposite U shape, being the widest below 30 and above 85. Regional HCF patterns add a further layer: while the inverted U persists, its peak shifts to the 60–64 s in high-income prefectures such as Tokyo—where senior emissions rise by 44% by 2050—and to the 45–49 s in low-income prefectures such as Akita, where younger age groups cut emissions by 58%. Although spatial carbon inequality narrows through midlife, it widens again in old age as eldercare and home energy needs grow. These findings suggest that a uniform mitigation trajectory overlooks key cohorts and regions. To meet the 2050 net-zero target, Japan should integrate age-, income-, and region-specific interventions—for example, targeted carbon pricing, green finance for middle-aged consumers, and less-urban low-carbon eldercare—into its decarbonization roadmap.

Suggested Citation

  • Yuzhuo Huang & Xiang Li & Xiaoqin Guo, 2025. "Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints," Sustainability, MDPI, vol. 17(12), pages 1-28, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5627-:d:1682139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    2. Ying Long & Jiahao Feng & Aolong Sun & Rui Wang & Yafei Wang, 2023. "Structural Characteristics of the Household Carbon Footprint in an Aging Society," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    3. Dagum, Camilo, 1997. "A New Approach to the Decomposition of the Gini Income Inequality Ratio," Empirical Economics, Springer, vol. 22(4), pages 515-531.
    4. Wang, Yueying & Liu, Qinming, 2024. "Examining factors driving household carbon emissions from elderly families—Evidence from Japan," Finance Research Letters, Elsevier, vol. 65(C).
    5. Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
    6. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    7. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    8. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    9. Dominik Wiedenhofer & Dabo Guan & Zhu Liu & Jing Meng & Ning Zhang & Yi-Ming Wei, 2017. "Unequal household carbon footprints in China," Nature Climate Change, Nature, vol. 7(1), pages 75-80, January.
    10. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    11. Abebe Hailemariam & Ratbek Dzhumashev & Muhammad Shahbaz, 2020. "Carbon emissions, income inequality and economic development," Empirical Economics, Springer, vol. 59(3), pages 1139-1159, September.
    12. Long, Yin & Yoshida, Yoshikuni & Meng, Jing & Guan, Dabo & Yao, Liming & Zhang, Haoran, 2019. "Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan," Applied Energy, Elsevier, vol. 247(C), pages 350-362.
    13. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    14. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    15. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    16. Glen P. Peters & Robbie M. Andrew & Josep G. Canadell & Sabine Fuss & Robert B. Jackson & Jan Ivar Korsbakken & Corinne Le Quéré & Nebojsa Nakicenovic, 2017. "Key indicators to track current progress and future ambition of the Paris Agreement," Nature Climate Change, Nature, vol. 7(2), pages 118-122, February.
    17. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    18. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    19. Zhiyuan Gao & Ziying Jia & Ying Zhao & Yu Hao, 2025. "Enhancing the Synergistic Pathways of Industrial Pollution and Carbon Reduction (PCR) in China: An Energy Efficiency Perspective," Energies, MDPI, vol. 18(10), pages 1-20, May.
    20. Heran Zheng & Yin Long & Richard Wood & Daniel Moran & Zengkai Zhang & Jing Meng & Kuishuang Feng & Edgar Hertwich & Dabo Guan, 2022. "Author Correction: Ageing society in developed countries challenges carbon mitigation," Nature Climate Change, Nature, vol. 12(6), pages 593-593, June.
    21. Du, Zhili & Xu, Jie & Lin, Boqiang, 2024. "What does the digital economy bring to household carbon emissions? – From the perspective of energy intensity," Applied Energy, Elsevier, vol. 370(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Long & Jiahao Feng & Aolong Sun & Rui Wang & Yafei Wang, 2023. "Structural Characteristics of the Household Carbon Footprint in an Aging Society," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    2. Huang, Liqiao & Yoshida, Yoshikuni & Li, Yuan & Cheng, Nan & Xue, Jinjun & Long, Yin, 2024. "Sustainable lifestyle: Quantification and determining factors analysis of household carbon footprints in Japan," Energy Policy, Elsevier, vol. 186(C).
    3. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    4. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    5. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    6. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    7. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    8. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Xiang Li & Yuzhuo Huang & Ken’ichi Matsumoto, 2024. "Assessing the Effectiveness of Market-Oriented Environmental Policies on CO 2 Emissions from Household Consumption: Evidence from a Quasi-Natural Experiment in Carbon Trading Pilots," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    10. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    11. Xin Li & Xiandan Cui & Minxi Wang, 2017. "Analysis of China’s Carbon Emissions Base on Carbon Flow in Four Main Sectors: 2000–2013," Sustainability, MDPI, vol. 9(4), pages 1-13, April.
    12. Dong, Kangyin & Zhao, Congyu & Nepal, Rabindra & Zander, Kerstin K., 2025. "Are natural disasters stumbling blocks to carbon inequality mitigation? A global perspective," Ecological Economics, Elsevier, vol. 227(C).
    13. Liang, Longwu & Chen, Mingxing & Zhang, Xiaoping & Sun, Mingxing, 2024. "Understanding changes in household carbon footprint during rapid urbanization in China," Energy Policy, Elsevier, vol. 185(C).
    14. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    15. Wang, Yueying & Liu, Qinming, 2024. "Examining factors driving household carbon emissions from elderly families—Evidence from Japan," Finance Research Letters, Elsevier, vol. 65(C).
    16. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    17. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    18. Jichao Geng & Na Yang & Wei Zhang & Li Yang, 2023. "Public Willingness to Pay for Green Lifestyle in China: A Contingent Valuation Method Based on Integrated Model," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
    19. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    20. Wang, Changjian & Miao, Zhuang & Chen, Xiaodong & Cheng, Yu, 2021. "Factors affecting changes of greenhouse gas emissions in Belt and Road countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5627-:d:1682139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.