IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4914-d1665450.html
   My bibliography  Save this article

Hourly Daylight Illuminance Prediction Considering Seasonal and Daylight Condition-Based Meteorological Analog Intervals

Author

Listed:
  • Zhiyi Zhu

    (School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Xingyu Wang

    (School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Jinghan Hao

    (School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Linkun Yang

    (School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Ying Yu

    (School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    State Key Laboratory of Green Building, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

With the growing global demand for energy optimization, particularly in the building sector, accurate daylight illuminance prediction plays a key role in enhancing energy efficiency through natural lighting and intelligent lighting systems. This study proposes a novel prediction model that integrates Meteorological Analog Intervals with a hybrid TCN-Transformer-BILSTM architecture to address the issue of insufficient prediction accuracy caused by the influence of various complex factors on daylight illuminance, as well as sudden weather changes, fluctuating meteorological conditions, and short-term variations. The model uses Grey Relational Analysis and Cosine Similarity to select historical data similar to the target moment in terms of meteorological conditions and time attributes, and constructs Meteorological Analog Intervals by combining the preceding and following time steps, providing high-quality data for the subsequent model development. The model effectively combines the multi-scale feature extraction capability of TCN, the global correlation-capturing advantage of Transformer, and the bidirectional temporal modeling characteristic of BILSTM to predict the temporal dynamics of daylight illuminance. Based on the measured data from Xi’an in 2023, experiments show that the proposed MAIL-TCN-Trans-BILSTM model achieves RMSEs of 1425.83 Lux and 2581.45 Lux under optimal and suboptimal daylight conditions, respectively, with MAPE reductions of 9–12% and 4–6% compared to baseline models. The proposed Meteorological Analog Intervals method significantly enhances the prediction accuracy and robustness of the model, especially in scenarios with complex and variable meteorological conditions, providing data support for intelligent lighting control systems.

Suggested Citation

  • Zhiyi Zhu & Xingyu Wang & Jinghan Hao & Linkun Yang & Ying Yu, 2025. "Hourly Daylight Illuminance Prediction Considering Seasonal and Daylight Condition-Based Meteorological Analog Intervals," Sustainability, MDPI, vol. 17(11), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4914-:d:1665450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Wang, Huakeer & Lu, Wei & Wu, Zhigen & Zhang, Guanhua, 2020. "Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai," Renewable Energy, Elsevier, vol. 145(C), pages 52-64.
    3. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    4. Michael, Neethu Elizabeth & Bansal, Ramesh C. & Ismail, Ali Ahmed Adam & Elnady, A. & Hasan, Shazia, 2024. "A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation," Renewable Energy, Elsevier, vol. 222(C).
    5. Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
    6. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    7. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    8. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    2. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    3. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    4. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    5. Tiantian Tu, 2025. "Bridging Short- and Long-Term Dependencies: A CNN-Transformer Hybrid for Financial Time Series Forecasting," Papers 2504.19309, arXiv.org.
    6. Dyna Heng & Anna Ivanova & Rodrigo Mariscal & Ms. Uma Ramakrishnan & Joyce Wong, 2016. "Advancing Financial Development in Latin America and the Caribbean," IMF Working Papers 2016/081, International Monetary Fund.
    7. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "The implications of monetary expansion in China for the US dollar," Journal of Asian Economics, Elsevier, vol. 46(C), pages 71-84.
    8. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    9. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    10. Guo-hua Ye & Mirxat Alim & Peng Guan & De-sheng Huang & Bao-sen Zhou & Wei Wu, 2021. "Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-13, March.
    11. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    12. Karzan Mahdi Ghafour & Abdulqadir Rahomee Ahmed Aljanabi, 2023. "The role of forecasting in preventing supply chain disruptions during the COVID-19 pandemic: a distributor-retailer perspective," Operations Management Research, Springer, vol. 16(2), pages 780-793, June.
    13. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    14. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    15. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    16. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
    17. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    18. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    19. Xianbo Li, 2022. "Sequence Model and Prediction for Sustainable Enrollments in Chinese Universities," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    20. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4914-:d:1665450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.