IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0248597.html
   My bibliography  Save this article

Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach

Author

Listed:
  • Guo-hua Ye
  • Mirxat Alim
  • Peng Guan
  • De-sheng Huang
  • Bao-sen Zhou
  • Wei Wu

Abstract

Objective: Hemorrhagic fever with renal syndrome (HFRS), one of the main public health concerns in mainland China, is a group of clinically similar diseases caused by hantaviruses. Statistical approaches have always been leveraged to forecast the future incidence rates of certain infectious diseases to effectively control their prevalence and outbreak potential. Compared to the use of one base model, model stacking can often produce better forecasting results. In this study, we fitted the monthly reported cases of HFRS in mainland China with a model stacking approach and compared its forecasting performance with those of five base models. Method: We fitted the monthly reported cases of HFRS ranging from January 2004 to June 2019 in mainland China with an autoregressive integrated moving average (ARIMA) model; the Holt-Winter (HW) method, seasonal decomposition of the time series by LOESS (STL); a neural network autoregressive (NNAR) model; and an exponential smoothing state space model with a Box-Cox transformation; ARMA errors; and trend and seasonal components (TBATS), and we combined the forecasting results with the inverse rank approach. The forecasting performance was estimated based on several accuracy criteria for model prediction, including the mean absolute percentage error (MAPE), root-mean-squared error (RMSE) and mean absolute error (MAE). Result: There was a slight downward trend and obvious seasonal periodicity inherent in the time series data for HFRS in mainland China. The model stacking method was selected as the best approach with the best performance in terms of both fitting (RMSE 128.19, MAE 85.63, MAPE 8.18) and prediction (RMSE 151.86, MAE 118.28, MAPE 13.16). Conclusion: The results showed that model stacking by using the optimal mean forecasting weight of the five abovementioned models achieved the best performance in terms of predicting HFRS one year into the future. This study has corroborated the conclusion that model stacking is an easy way to enhance prediction accuracy when modeling HFRS.

Suggested Citation

  • Guo-hua Ye & Mirxat Alim & Peng Guan & De-sheng Huang & Bao-sen Zhou & Wei Wu, 2021. "Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-13, March.
  • Handle: RePEc:plo:pone00:0248597
    DOI: 10.1371/journal.pone.0248597
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248597
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248597&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0248597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    2. Hong Xiao & Hai-Ning Liu & Li-Dong Gao & Cun-Rui Huang & Zhou Li & Xiao-Ling Lin & Bi-Yun Chen & Huai-Yu Tian, 2013. "Investigating the Effects of Food Available and Climatic Variables on the Animal Host Density of Hemorrhagic Fever with Renal Syndrome in Changsha, China," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    3. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    4. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    5. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    6. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    7. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    2. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    3. Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.
    4. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    5. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Gardner, Everette S., 2015. "Conservative forecasting with the damped trend," Journal of Business Research, Elsevier, vol. 68(8), pages 1739-1741.
    8. Costache, Mioara & Sebastian Cristea, Dragos & Petrea, Stefan-Mihai & Neculita, Mihaela & Rahoveanu, Maria Magdalena Turek & Simionov, Ira-Adeline & Mogodan, Alina & Sarpe, Daniela & Rahoveanu, Adrian, 2021. "Integrating aquaponics production systems into the Romanian green procurement network," Land Use Policy, Elsevier, vol. 108(C).
    9. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    10. McKenzie, Eddie & Gardner Jr., Everette S., 2010. "Damped trend exponential smoothing: A modelling viewpoint," International Journal of Forecasting, Elsevier, vol. 26(4), pages 661-665, October.
    11. Agustín A. Sánchez de la Nieta & Virginia González & Javier Contreras, 2016. "Portfolio Decision of Short-Term Electricity Forecasted Prices through Stochastic Programming," Energies, MDPI, vol. 9(12), pages 1-19, December.
    12. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    13. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
    14. Acar, Yavuz & Gardner, Everette S., 2012. "Forecasting method selection in a global supply chain," International Journal of Forecasting, Elsevier, vol. 28(4), pages 842-848.
    15. Zhen Zeng & Tucker Balch & Manuela Veloso, 2021. "Deep Video Prediction for Time Series Forecasting," Papers 2102.12061, arXiv.org, revised Nov 2021.
    16. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    17. Madden, Gary & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
    18. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    19. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    20. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.