IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4780-d1662205.html
   My bibliography  Save this article

The Real-Time Distributed Control of Shared Energy Storage for Frequency Regulation and Renewable Energy Balancing

Author

Listed:
  • Yuxuan Zhuang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xin Fang

    (Polytechnic Institute, Zhejiang University, Hangzhou 310015, China)

Abstract

With the increasing integration of renewable energy sources, distributed shared energy storage (DSES) systems play a critical role in enhancing power system flexibility, operational resilience, and energy sustainability. However, conventional scheduling methods often suffer from excessive communication burdens, limited scalability, and poor real-time responsiveness, especially when handling fast-changing frequency regulation signals and fluctuating renewable energy outputs. To address these challenges, this paper proposes a consensus-driven distributed online convex optimization method that enables a decentralized scheduling of energy storage units by leveraging the consensus algorithm for local decision-making while maintaining global consistency. Additionally, an adaptive event-triggered mechanism is designed to dynamically adjust the communication frequency based on system state variations, reducing redundant information exchange and ensuring convergence and stability in a fully distributed environment. Simulation results on the IEEE 14-bus test system show that the strategy reduces the communication load by 33–60% and improves the convergence speed by over 40% compared to baseline methods. It also demonstrates a strong adaptability to storage unit disconnection and reconnection. By enabling a fast and efficient response to grid services such as frequency regulation and renewable energy balancing, the proposed approach contributes to the development of intelligent and sustainable power systems.

Suggested Citation

  • Yuxuan Zhuang & Xin Fang, 2025. "The Real-Time Distributed Control of Shared Energy Storage for Frequency Regulation and Renewable Energy Balancing," Sustainability, MDPI, vol. 17(11), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4780-:d:1662205
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    2. Liu, Haiquan & Zhou, Suyang & Gu, Wei & Zhuang, Wennan & Gao, Mingyang & Chan, C.C. & Zhang, Xiaoping, 2025. "Coordinated planning model for multi-regional ammonia industries leveraging hydrogen supply chain and power grid integration: A case study of Shandong," Applied Energy, Elsevier, vol. 377(PA).
    3. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    2. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    3. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    4. Shen Wang & Guohe Huang & Yurui Fan, 2018. "A Multistage Distribution-Generation Planning Model for Clean Power Generation under Multiple Uncertainties—A Case Study of Urumqi, China," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
    5. Zhang, Ce & Hou, Beiran & Li, Minxia & Dang, Chaobin & Chen, Xun & Li, Xiuming & Han, Zongwei, 2025. "Feasibility analysis of multi-mode data center liquid cooling system integrated with Carnot battery energy storage module," Energy, Elsevier, vol. 320(C).
    6. Morstyn, Thomas & Chilcott, Martin & McCulloch, Malcolm D., 2019. "Gravity energy storage with suspended weights for abandoned mine shafts," Applied Energy, Elsevier, vol. 239(C), pages 201-206.
    7. Bandyopadhyay, Arkasama & Leibowicz, Benjamin D. & Webber, Michael E., 2021. "Solar panels and smart thermostats: The power duo of the residential sector?," Applied Energy, Elsevier, vol. 290(C).
    8. Pu, Yuchen & Li, Qi & Huo, Shasha & Breaz, Elena & Chen, Weirong & Gao, Fei, 2024. "Optimal configuration for shared electric-hydrogen energy storage for multiple integrated energy systems with mobile hydrogen transportation," Renewable Energy, Elsevier, vol. 237(PC).
    9. Marija Miletić & Hrvoje Pandžić & Dechang Yang, 2020. "Operating and Investment Models for Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-33, September.
    10. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
    11. Dong, Min & Su, Juan & Zhao, Jing & Dong, Yanjun & Du, Songhuai, 2024. "Fraudulent balancing operation strategy for multi-agent P2P electricity trading considering neighborhood scene public energy storage," Applied Energy, Elsevier, vol. 375(C).
    12. Zhang, Yao & Yin, Suzhen & Su, Chuanqi & Liu, Zhan, 2025. "Study of the underwater air energy storage with various heat storage medium and stage number," Renewable Energy, Elsevier, vol. 242(C).
    13. Avau, Michiel & Govaerts, Niels & Delarue, Erik, 2021. "Impact of distribution tariffs on prosumer demand response," Energy Policy, Elsevier, vol. 151(C).
    14. Rezaeimozafar, Mostafa & Monaghan, Rory F.D. & Barrett, Enda & Duffy, Maeve, 2022. "A review of behind-the-meter energy storage systems in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Lee, Hyun-Suk, 2024. "Automated tariff design for energy supply–demand matching based on Bayesian optimization: Technical framework and policy implications," Energy Policy, Elsevier, vol. 188(C).
    16. Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
    17. Xie, Yulong & Li, Lee & Hou, Tianyu & Luo, Kang & Xu, Zhenyu & Dai, Mingcheng & Zhang, Lixiong, 2024. "Shared energy storage configuration in distribution networks: A multi-agent tri-level programming approach," Applied Energy, Elsevier, vol. 372(C).
    18. Shaw-Williams, Damian & Susilawati, Connie, 2020. "A techno-economic evaluation of Virtual Net Metering for the Australian community housing sector," Applied Energy, Elsevier, vol. 261(C).
    19. Byuk-Keun Jo & Seungmin Jung & Gilsoo Jang, 2019. "Feasibility Analysis of Behind-the-Meter Energy Storage System According to Public Policy on an Electricity Charge Discount Program," Sustainability, MDPI, vol. 11(1), pages 1-17, January.
    20. Biggins, F.A.V. & Travers, D. & Ejeh, J.O. & Lee, R. & Buckley, A. & Brown, S., 2023. "The economic impact of location on a solar farm co-located with energy storage," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4780-:d:1662205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.