IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125001272.html
   My bibliography  Save this article

Study of the underwater air energy storage with various heat storage medium and stage number

Author

Listed:
  • Zhang, Yao
  • Yin, Suzhen
  • Su, Chuanqi
  • Liu, Zhan

Abstract

Underwater air energy storage has drawn the worldwide attention as an enjoyable new energy regulating approach, with several merits such as isobaric operation, high efficiency and affordable initial costs. However, at different water depths how to efficiently fit the stage number with heat storage materials is still a significant research gap. Both the thermodynamic and economic performances are presented to the considered systems in this paper to address this issue. Numeral simulations are conducted on the systems with the established thermo-economic models. Through the analysis results, the three-stage system with water is best considered when the water depth is deeper than 250 m, otherwise a one-stage system coupled with HitecXL salt is most advised. When the water depth is less than 100 m, installation of the underwater air energy storage may be not proper due to the poor economics. On the other hand, the economic improvement can be disregarded by increasing the water depth when its value exceeds 500 m. This indicates that there is no need to locate the underwater air chamber at depths greater than 500 m as the increased operational risks can be expected with larger depth. The one-stage system is much more insensitive to the machine efficiency than the three-stage system due to the less turbomachineries. The increase in daily operational duration can effectively ameliorate the system economic performance.

Suggested Citation

  • Zhang, Yao & Yin, Suzhen & Su, Chuanqi & Liu, Zhan, 2025. "Study of the underwater air energy storage with various heat storage medium and stage number," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001272
    DOI: 10.1016/j.renene.2025.122465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheung, Brian C. & Carriveau, Rupp & Ting, David S.K., 2014. "Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm," Energy, Elsevier, vol. 74(C), pages 396-404.
    2. Kluger, Jocelyn M. & Haji, Maha N. & Slocum, Alexander H., 2023. "The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage," Applied Energy, Elsevier, vol. 331(C).
    3. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    4. Liu, Zhan & Liu, Xu & Yang, Shanju & Hooman, Kamel & Yang, Xiaohu, 2021. "Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage," Applied Energy, Elsevier, vol. 303(C).
    5. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    6. Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
    7. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    8. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    9. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    10. Liu, Tianye & Yang, Zhen & Duan, Yuanyuan, 2023. "Short- and long-duration cooperative energy storage system: Optimizing sizing and comparing rule-based strategies," Energy, Elsevier, vol. 281(C).
    11. Ebrahimi, Mehdi & Carriveau, Rupp & Ting, David S.-K. & McGillis, Andrew, 2019. "Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility," Applied Energy, Elsevier, vol. 242(C), pages 1198-1208.
    12. Fiaschi, D. & Manfrida, G. & Secchi, R. & Tempesti, D., 2012. "A versatile system for offshore energy conversion including diversified storage," Energy, Elsevier, vol. 48(1), pages 566-576.
    13. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    14. Lawrie Swinfen-Styles & Seamus D. Garvey & Donald Giddings & Bruno Cárdenas & James P. Rouse, 2022. "Analysis of a Wind-Driven Air Compression System Utilising Underwater Compressed Air Energy Storage," Energies, MDPI, vol. 15(6), pages 1-28, March.
    15. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    16. Xu, Wenpan & Zhao, Pan & Gou, Feifei & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng, 2022. "Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage," Applied Energy, Elsevier, vol. 326(C).
    17. Vecchi, Andrea & Sciacovelli, Adriano, 2023. "Long-duration thermo-mechanical energy storage – Present and future techno-economic competitiveness," Applied Energy, Elsevier, vol. 334(C).
    18. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Maio, Marco & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio & Fontana, Nicola & Marini, Gustavo, 2024. "An innovative approach for optimal selection of pumped hydro energy storage systems to foster sustainable energy integration," Renewable Energy, Elsevier, vol. 227(C).
    20. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    21. Yang, Xinyi & Li, Yaowang & Liu, Ziwen & Zhang, Shixu & Liu, Yuliang & Zhang, Ning, 2023. "Optimal planning of energy storage system under the business model of cloud energy storage considering system inertia support and the electricity-heat coordination," Applied Energy, Elsevier, vol. 349(C).
    22. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    23. Wang, Mingkun & Zhao, Pan & Yang, Yi & Dai, Yiping, 2015. "Performance analysis of energy storage system based on liquid carbon dioxide with different configurations," Energy, Elsevier, vol. 93(P2), pages 1931-1942.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhan & Ding, Jialu & Huang, Xinyu & Liu, Zhengguang & Yan, Xuewen & Liu, Xianglei & Yang, Xiaohu, 2024. "Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas," Applied Energy, Elsevier, vol. 354(PA).
    2. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    3. Yang, Shanju & Zhang, Yao & Gao, Zening & Liu, Zhan, 2024. "Isobaric compressed air energy storage system: Water compensating cycle or CO2 compensating cycle?," Energy, Elsevier, vol. 312(C).
    4. Liu, Junwei & Zhang, Yilun & Yin, Suzhen & Zhang, Yao & Luo, Xiaoling & Liu, Zhan, 2024. "Economic and exergy transmission analysis of the gas-liquid type compressed CO2 energy storage system," Renewable Energy, Elsevier, vol. 230(C).
    5. Liu, Zhan & Liu, Xu & Yang, Shanju & Hooman, Kamel & Yang, Xiaohu, 2021. "Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage," Applied Energy, Elsevier, vol. 303(C).
    6. Liu, Changchun & Su, Xu & Yin, Zhao & Sheng, Yong & Zhou, Xuezhi & Xu, Yujie & Wang, Xudong & Chen, Haisheng, 2024. "Experimental study on the feasibility of isobaric compressed air energy storage as wind power side energy storage," Applied Energy, Elsevier, vol. 364(C).
    7. Liu, Zhongyan & Shao, Jiawei & Guan, Hongwei & Jin, Xu & Zhang, Hao & Li, Heng & Su, Wei & Sun, Dahan, 2025. "Thermo-economic and advanced exergy analysis of a novel liquid carbon dioxide energy storage system coupled with solar energy and liquefied natural gas," Energy, Elsevier, vol. 315(C).
    8. Bu, Xianbiao & Huang, Sihao & Liu, Shi & Yang, Yi & Shu, Jie & Tan, Xianfeng & Chen, Hongnian & Wang, Guiling, 2024. "Efficient utilization of abandoned mines for isobaric compressed air energy storage," Energy, Elsevier, vol. 311(C).
    9. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    10. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    11. Ng, Jian Yew & Tan, Wen-Shan & Chan, Ping Yi & Elias, Azimin, 2024. "Multi-objective optimisation of buoyancy energy storage technology using transit search algorithm," Renewable Energy, Elsevier, vol. 225(C).
    12. Guo, Huan & Xu, Yujie & Huang, Lujing & Sun, Jianting & Chen, Haisheng, 2023. "Optimization strategy using corresponding-point methodology (CPM) concerning finite time and heat conduction rate for CAES systems," Energy, Elsevier, vol. 266(C).
    13. You, Huailiang & Zhou, Xianqi & Chen, Daifen & Xiao, Yan & Hu, Bin & Li, Guoxiang & Han, Jitian & Lysyakov, Anatoly, 2025. "Techno-economic assessment of a novel combined cooling, heating, and power (CCHP) system driven by solid oxide fuel cell and solar thermal utilization," Renewable Energy, Elsevier, vol. 240(C).
    14. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    15. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    16. Wang, Ke & Cui, Qian & Liu, Yixue & He, Qing, 2024. "Performance analysis of a novel isothermal compressed carbon dioxide energy storage system integrated with solar thermal storage," Energy, Elsevier, vol. 303(C).
    17. Li, Bo & Xu, Hongpeng & Jiang, Yuemao & Wu, Chuang & Wang, Shun-sen, 2025. "Energy, exergy, economic and exergoeconomic (4E) analysis of a high-temperature liquid CO2 energy storage system: Dual-stage thermal energy storage for performance enhancement," Renewable Energy, Elsevier, vol. 239(C).
    18. Song, Xinhui & Qu, Zhengwei & Wang, Yunjing & Chong, Zhenxiao, 2025. "Optimization of multi-energy cloud energy storage for multi-microgrid system with hydrogen refueling station," Renewable Energy, Elsevier, vol. 241(C).
    19. Liu, Zhan & Zhang, Yilun & Zhang, Yao & Su, Chuanqi, 2024. "Performance of a high-temperature transcritical pumped thermal energy storage system based on CO2 binary mixtures," Energy, Elsevier, vol. 305(C).
    20. Wang, Yuhong & Chen, Xi & Xu, Jingxuan & Lu, Yilin, 2025. "Thermodynamic and economic performance analysis of a liquid carbon dioxide energy storage system coupled with absorption refrigeration cycle," Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.