IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4501-d1656464.html
   My bibliography  Save this article

Investigating Threshold Distances and Behavioral Factors Affecting Railway Station Accessibility: A Case Study of the Seoul Metropolitan Area, South Korea

Author

Listed:
  • Kyujin Lee

    (Department of Transportation Engineering, Ajou University, Suwon 16499, Republic of Korea)

  • Tae-Wan Kim

    (Department of Transportation Engineering, Ajou University, Suwon 16499, Republic of Korea)

  • Jaeho Kwak

    (Korea Railroad Research Institute, Suwon 16105, Republic of Korea)

  • Gyoseok Jeon

    (Department of Transportation Engineering, Ajou University, Suwon 16499, Republic of Korea)

Abstract

This study aimed to analyze the characteristics and influencing factors of the access trips of railway users in the Seoul Metropolitan Area, South Korea. A total of 11 metropolitan railway stations and 4 urban railway stations were selected, and data on users’ travel characteristics—including access modes, travel purposes, demographic attributes, and whether they were accompanied by infants—were collected through one-on-one interviews. Based on 1683 collected cases, the data were analyzed using a multivariate analysis of variance (MANOVA). The results showed a statistically significant difference between bus access distances, which were 1.78 km for metropolitan railways and 1.59 km for urban railways. In contrast, the walking access distances were approximately 620 m for both, showing a minimal difference. The further analysis of factors influencing the access distance revealed that apartment ownership, users’ income level, the presence of accompanying travelers, the distance between stations, the number of transfer routes, and whether users were traveling with infants had significant effects.

Suggested Citation

  • Kyujin Lee & Tae-Wan Kim & Jaeho Kwak & Gyoseok Jeon, 2025. "Investigating Threshold Distances and Behavioral Factors Affecting Railway Station Accessibility: A Case Study of the Seoul Metropolitan Area, South Korea," Sustainability, MDPI, vol. 17(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4501-:d:1656464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    2. Zijing Chen & Tao Wu & Linna Gao & Ye Zhou, 2024. "Comparative Analysis of Transit-Oriented Development (TOD) Types in the Metropolitan Region Along the Middle Reaches of the Yangtze River," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    3. Phattarasuda Witchayaphong & Surachet Pravinvongvuth & Kunnawee Kanitpong & Kazushi Sano & Suksun Horpibulsuk, 2020. "Influential Factors Affecting Travelers’ Mode Choice Behavior on Mass Transit in Bangkok, Thailand," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    4. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    5. Xia Li & Zhenyu Liu & Xinwei Ma, 2022. "Measuring Access and Egress Distance and Catchment Area of Multiple Feeding Modes for Metro Transferring Using Survey Data," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    6. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    2. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    3. Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
    4. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    5. Sogbe, Eugene & Susilawati, Susilawati & Pin, Tan Chee, 2024. "First-mile and last-mile externalities: Perspectives from a developing country," Journal of Transport Geography, Elsevier, vol. 121(C).
    6. O'Connor, David & Caulfield, Brian, 2018. "Level of service and the transit neighbourhood - Observations from Dublin city and suburbs," Research in Transportation Economics, Elsevier, vol. 69(C), pages 59-67.
    7. Zhang, Guozheng & Wang, Dianhai & Chen, Mengwei & Zeng, Jiaqi & Cai, Zhengyi, 2025. "Assessing urban-scale spatiotemporal heterogeneous metro station coverage using multi-source mobility data," Journal of Transport Geography, Elsevier, vol. 123(C).
    8. Chen, Shaopei & Claramunt, Christophe & Ray, Cyril, 2014. "A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network," Journal of Transport Geography, Elsevier, vol. 36(C), pages 12-23.
    9. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    10. Seltzer, Andrew & Wadsworth, Jonathan, 2021. "The Impact of Public Transportation and Commuting on Urban Labour Markets: Evidence from the New Survey of London Life and Labour, 1929-32," IZA Discussion Papers 14628, Institute of Labor Economics (IZA).
    11. Jaroslav Burian & Lenka Zajíčková & Igor Ivan & Karel Macků, 2018. "Attitudes and Motivation to Use Public or Individual Transport: A Case Study of Two Middle-Sized Cities," Social Sciences, MDPI, vol. 7(6), pages 1-25, May.
    12. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    13. Bo Wan & Xudan Zhao & Yuhan Sun & Tao Yang, 2023. "Unraveling the Impact of Spatial Configuration on TOD Function Mix Use and Spatial Intensity: An Analysis of 47 Morning Top-Flow Stations in Beijing (2018–2020)," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    14. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    15. Li, Haojie & Zhang, Yingheng & Zhu, Manman & Ren, Gang, 2021. "Impacts of COVID-19 on the usage of public bicycle share in London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 140-155.
    16. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    17. Gao, Feng & Chen, Xin & Liao, Shunyi & Chen, Wangyang & Feng, Lei & Wu, Jiemin & Zhou, Qingya & Zheng, Yuming & Li, Guanyao & Li, Shaoying, 2024. "Crafting a jogging-friendly city: Harnessing big data to evaluate the runnability of urban streets," Journal of Transport Geography, Elsevier, vol. 121(C).
    18. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    19. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    20. Cui, Mengying & Yu, Lijie & Nie, Shaoyu & Dai, Zhe & Ge, Ying-en & Levinson, David, 2025. "How do access and spatial dependency shape metro passenger flows," Journal of Transport Geography, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4501-:d:1656464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.