IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3655-d1383886.html
   My bibliography  Save this article

Incremental Green Investment Rule Induction Using Intelligent Rough Sets from an Energy Perspective

Author

Listed:
  • Chun-Che Huang

    (Department of Information Management, National Chi Nan University, 1 University Road, Nantou 545301, Taiwan)

  • Wen-Yau Liang

    (Department of Information Management, National Changhua University of Education, 1 Jin-De Road, Changhua 500207, Taiwan)

  • Horng-Fu Chuang

    (Department of Accounting Information, Da-Yeh University, No. 168, University Rd., Changhua 515006, Taiwan)

  • Tzu-Liang (Bill) Tseng

    (Department of Industrial Manufacturing and Systems Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA)

  • Yi-Chun Shen

    (Department of Information Management, National Chi Nan University, 1 University Road, Nantou 545301, Taiwan)

Abstract

The United Nations Sustainable Development Goals (SDGs) agenda has stated the importance of green investment. Energy-related green investment involves intricate economic behavior and ecological objectives. Green investment definitely requires agile decisions, e.g., rule-based decisions, to respond to changes outside the country. The identification of significant rules with numerous result features and the assurance of the stability and robustness of the rules in decision-making are crucial for green energy investment. The rough set (RS) methodology works well for processing qualitative data that are difficult to examine with traditional statistical methods in order to induce decision rules. The RS methodology starts with the analysis of the limits of discernibility of a subset of objects belonging to the domain to induce rules. However, traditional RS methods cannot incrementally generate rules with outcome features when new objects are added, which frequently occurs in green energy investment with the inclusion of big data. In this paper, an intelligent RS approach is proposed. This approach effectively identifies the rules that either stay the same or are altered based on four classified cases after a new object is introduced; it is novel because it can deal with a complicated investment environment by imposing multiple outcome features, specifically when it is required to flexibly extract new decision rules via adding new data sets.

Suggested Citation

  • Chun-Che Huang & Wen-Yau Liang & Horng-Fu Chuang & Tzu-Liang (Bill) Tseng & Yi-Chun Shen, 2024. "Incremental Green Investment Rule Induction Using Intelligent Rough Sets from an Energy Perspective," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3655-:d:1383886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. KC Shasteen & Murat Kacira, 2023. "Predictive Modeling and Computer Vision-Based Decision Support to Optimize Resource Use in Vertical Farms," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    2. Jiao Weihong & Tsung-Hsien Kuo & Siao-Yun Wei & Misbah ul Islam & Md. Shamim Hossain & Korakod Tongkachok & Asma Imran, 2022. "Relationship between trade enhancement, firm characteristics and CSR: key mediating role of green investment," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 3900-3916, December.
    3. Stucki, Tobias, 2019. "Which firms benefit from investments in green energy technologies? – The effect of energy costs," Research Policy, Elsevier, vol. 48(3), pages 546-555.
    4. Andrea Masini & E. Menichetti, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Post-Print hal-00651706, HAL.
    5. Bian, Junsong & Zhang, Guoqing & Zhou, Guanghui, 2020. "Manufacturer vs. Consumer Subsidy with Green Technology Investment and Environmental Concern," European Journal of Operational Research, Elsevier, vol. 287(3), pages 832-843.
    6. Marc Ringel & Saranda Mjekic, 2023. "Analyzing the Role of Banks in Providing Green Finance for Retail Customers: The Case of Germany," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    7. Wang, Moran & Li, Xuerong & Wang, Shouyang, 2021. "Discovering research trends and opportunities of green finance and energy policy: A data-driven scientometric analysis," Energy Policy, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauwens, Thomas, 2019. "Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders," Energy Policy, Elsevier, vol. 129(C), pages 841-852.
    2. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    3. Hennessey, Ryan & Pittman, Jeremy & Morand, Annette & Douglas, Allan, 2017. "Co-benefits of integrating climate change adaptation and mitigation in the Canadian energy sector," Energy Policy, Elsevier, vol. 111(C), pages 214-221.
    4. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Liu, Jiangtao & Zhang, Yi & Kuang, Jia, 2023. "Fintech development and green innovation: Evidence from China," Energy Policy, Elsevier, vol. 183(C).
    6. Wang, Kai-Hua & Zhao, Yan-Xin & Jiang, Cui-Feng & Li, Zheng-Zheng, 2022. "Does green finance inspire sustainable development? Evidence from a global perspective," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 412-426.
    7. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    8. Xia, Jing & Zheng, Yan & Yang, Lehe & Xiao, Yujie, 2024. "Government intervention in green technology innovation: The carrot, the stick or both?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    9. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    10. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    11. Jinxuan Song & Xu Yan, 2023. "Impact of Government Subsidies, Competition, and Blockchain on Green Supply Chain Decisions," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    12. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    13. Zheng, Xiaotian & Zhou, Youcheng & Iqbal, Sajid, 2022. "Working capital management of SMEs in COVID-19: role of managerial personality traits and overconfidence behavior," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 439-451.
    14. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    15. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    16. Xia, Jing & Niu, Wenju & Chen, Xiaolin & Zhang, Lianmin, 2023. "Investing in a shared supplier to encourage environmental responsibility under spillovers and demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    17. Ying, Ying & Wang, Shixiang & Liu, Yang, 2022. "Make bricks without straw: Eco-innovation for resource-constrained firms in emerging markets," Technovation, Elsevier, vol. 114(C).
    18. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar & Adekoya, Oluwasegun B. & Oteng-Abayie, Eric Fosu, 2023. "An analysis of the time-varying causality and dynamic correlation between green bonds and US gas prices," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    20. Fang, Lei & Zhao, Sai, 2023. "On the green subsidies in a differentiated market," International Journal of Production Economics, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3655-:d:1383886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.