IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2812-d1365414.html
   My bibliography  Save this article

The Effects of Urbanization on Urban Land Green Use Efficiency of Yangtze River Delta Urban Agglomeration: Mechanism from the Technological Innovation

Author

Listed:
  • Changyong Yang

    (Department of Sociology, Hohai University, Nanjing 211100, China)

  • Jianyuan Huang

    (Department of Sociology, Hohai University, Nanjing 211100, China)

  • Man Jiao

    (Department of Land Resource Management, Hainan University, Haikou 570228, China)

  • Qi Yang

    (Institute of Population Research, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

Abstract

It is urgent and essential to explore the facilitating mechanism of urban land green use efficiency (ULGUE) in promoting the coordinated development of humans and land. In this study, the SBM-DEA model was used to measure ULGUE from 26 cities across the Yangtze River Delta Urban Agglomeration (YRDUA) in China from 2006 to 2019. Desired (eco-friendly) outputs and undesired (non-eco-friendly) green outputs were considered in the selection of ULGUE indicators. This study explored the impact of the mechanism of green, digital, and transportation technological innovation on ULGUE in the process of urbanization by the mediation model. The results showed that urbanization has a positive effect on ULGUE and technological innovation, and for every 1% increase in urbanization, ULGUE increases by 0.048%. The results are still significant after robustness tests. The findings suggest that the improvement of social and economic benefits brought by urbanization in the YRDUA is greater than its negative impact. A mechanistic analysis showed that green, digital, and transportation technological innovation can amplify the positive impact by curbing the growth of energy consumption and alleviating pollution. Therefore, the government should promote ULGUE with technological innovation, construct an ULGUE assessment mechanism, incorporate the promotion of green land use into the planning of targets and incentives for technological innovation, and promote the efficient use of land.

Suggested Citation

  • Changyong Yang & Jianyuan Huang & Man Jiao & Qi Yang, 2024. "The Effects of Urbanization on Urban Land Green Use Efficiency of Yangtze River Delta Urban Agglomeration: Mechanism from the Technological Innovation," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2812-:d:1365414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Liangen Zeng, 2022. "The Driving Mechanism of Urban Land Green Use Efficiency in China Based on the EBM Model with Undesirable Outputs and the Spatial Dubin Model," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    3. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    4. Kui Yang & Taiyang Zhong & Yu Zhang & Qi Wen, 2020. "Total factor productivity of urban land use in China," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1784-1803, December.
    5. Lema, Adrian & Lema, Rasmus, 2016. "Low-carbon innovation and technology transfer in latecomer countries: Insights from solar PV in the clean development mechanism," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 223-236.
    6. Xie, Hualin & Chen, Qianru & Wang, Wei & He, Yafen, 2018. "Analyzing the green efficiency of arable land use in China," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 15-28.
    7. Zhao, Zhe & Bai, Yuping & Wang, Guofeng & Chen, Jiancheng & Yu, Jiangli & Liu, Wei, 2018. "Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 19-26.
    8. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    9. Tan, Shukui & Hu, Bixia & Kuang, Bing & Zhou, Min, 2021. "Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 106(C).
    10. Andy Cumbers & Danny MacKinnon, 2004. "Introduction: Clusters in Urban and Regional Development," Urban Studies, Urban Studies Journal Limited, vol. 41(5-6), pages 959-969, May.
    11. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    12. Zhangsheng Liu & Binbin Lai & Shuangyin Wu & Xiaotian Liu & Qunhong Liu & Kun Ge, 2022. "Growth Targets Management, Regional Competition and Urban Land Green Use Efficiency According to Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
    13. Melia, Steve & Parkhurst, Graham & Barton, Hugh, 2011. "The paradox of intensification," Transport Policy, Elsevier, vol. 18(1), pages 46-52, January.
    14. Kun Ge & Shan Zou & Shangan Ke & Danling Chen, 2021. "Does Urban Agglomeration Promote Urban Land Green Use Efficiency? Take the Yangtze River Economic Zone of China as an Example," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    15. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pruethsan Sutthichaimethee & Grzegorz Mentel & Volodymyr Voloshyn & Halyna Mishchuk & Yuriy Bilan, 2024. "Modeling the Efficiency of Resource Consumption Management in Construction Under Sustainability Policy: Enriching the DSEM-ARIMA Model," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
    2. Chong Liu & Haixin Huang & Jianfei Yang, 2025. "Can Land System Innovation Promote the Improvement of Green Land Use Efficiency in Urban Land—Evidence from China’s Pilot Reform of the Approval System for Urban Construction Land," Land, MDPI, vol. 14(4), pages 1-23, April.
    3. Chulin Chen & Nanyang Xu & Shouyun Shen & Wei He & Yang Su, 2025. "Exploring the Impact of Green Technology Innovation on Rural Habitat System Resilience," Agriculture, MDPI, vol. 15(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    2. Guangya Zhou & Helian Xu & Chuanzeng Jiang & Shiqi Deng & Liming Chen & Zhi Zhang, 2024. "Has the Digital Economy Improved the Urban Land Green Use Efficiency? Evidence from the National Big Data Comprehensive Pilot Zone Policy," Land, MDPI, vol. 13(7), pages 1-25, June.
    3. Yin Ma & Minrui Zheng & Xinqi Zheng & Yi Huang & Feng Xu & Xiaoli Wang & Jiantao Liu & Yongqiang Lv & Wenchao Liu, 2023. "Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review," Land, MDPI, vol. 12(4), pages 1-21, April.
    4. Liu, Qingfang & Jiang, Huaxiong & Li, Jianmei & Song, Jinping & Zhang, Xiantian, 2024. "Antidote or poison? Digital economy and land-use," Land Use Policy, Elsevier, vol. 139(C).
    5. Han Chen & Chunyu Meng & Qilin Cao, 2022. "Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function," Land, MDPI, vol. 11(7), pages 1-16, July.
    6. Zhaoyang Cai & Ge Song & Weiming Li, 2025. "Does digital economy promote urban land green use efficiency?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 8043-8064, March.
    7. Liu Yang & Bingyang Han & Zhili Ma & Ting Wang & Yingchao Lin, 2022. "Analysis of the Urban Land Use Efficiency in the New-Type Urbanization Process of China’s Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(13), pages 1-22, July.
    8. Luyao Xu & Hui Sun, 2024. "Study on the Impact of Carbon Emission Trading Pilot on Green Land Use Efficiency in Cities," Land, MDPI, vol. 13(4), pages 1-21, April.
    9. Yuan Feng & Ying Li & Changfei Nie, 2023. "The Effect of Place-Based Policy on Urban Land Green Use Efficiency: Evidence from the Pilot Free-Trade Zone Establishment in China," Land, MDPI, vol. 12(3), pages 1-19, March.
    10. Xinyue Wang & Kegao Yan & Yang Shi & Han Hu & Shanjun Mao, 2025. "The Nonlinear Impact of Economic Growth Pressure on Urban Land Green Utilization Efficiency—Empirical Research from China," Land, MDPI, vol. 14(4), pages 1-29, March.
    11. Tan, Shukui & Hu, Bixia & Kuang, Bing & Zhou, Min, 2021. "Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 106(C).
    12. Zhibo Zhao & Tian Yuan & Xunpeng Shi & Lingdi Zhao, 2020. "Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1363-1380, October.
    13. Guijie Qiu & Xiaonan Xing & Guanqiao Cong & Xinyu Yang, 2022. "Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    14. Huifang Cheng & Ting Yu & Hao Zhang & Kaifeng Duan & Jianing Zhu, 2022. "Dynamic Estimation of Urban Land Use Efficiency and Sustainability Analysis in China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    15. Di Zhu & Yinghong Wang & Shangui Peng & Fenglin Zhang, 2022. "Influence Mechanism of Polycentric Spatial Structure on Urban Land Use Efficiency: A Moderated Mediation Model," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    16. Tingyu Zhang & Yan Tan & Guy M. Robinson & Wenqian Bai, 2025. "China’s New-Style Urbanization and Its Impact on the Green Efficiency of Urban Land Use," Sustainability, MDPI, vol. 17(5), pages 1-30, March.
    17. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    18. Stéphane Mbiankeu Nguea & Hervé Kaffo Fotio, 2025. "The heterogeneous effects of renewable energy, urbanization and democracy on CO2 emissions: Does economic growth matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(4), pages 8835-8861, April.
    19. Yuqi Zhu & Siwei Shen & Linyu Du & Jun Fu & Jian Zou & Lina Peng & Rui Ding, 2023. "Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta," Land, MDPI, vol. 12(3), pages 1-27, March.
    20. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2812-:d:1365414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.