IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1537-d1337436.html
   My bibliography  Save this article

Comparative Evaluation of Crash Hotspot Identification Methods: Empirical Bayes vs. Potential for Safety Improvement Using Variants of Negative Binomial Models

Author

Listed:
  • Muhammad Wisal Khattak

    (UGent, Department of Civil Engineering, Technologiepark 60, 9052 Zwijnaarde, Belgium
    UHasselt, Transportation Research Institute (IMOB), Martelarenlaan 42, 3500 Hasselt, Belgium)

  • Hans De Backer

    (UGent, Department of Civil Engineering, Technologiepark 60, 9052 Zwijnaarde, Belgium)

  • Pieter De Winne

    (UGent, Department of Civil Engineering, Technologiepark 60, 9052 Zwijnaarde, Belgium)

  • Tom Brijs

    (UHasselt, Transportation Research Institute (IMOB), Martelarenlaan 42, 3500 Hasselt, Belgium)

  • Ali Pirdavani

    (UHasselt, Transportation Research Institute (IMOB), Martelarenlaan 42, 3500 Hasselt, Belgium
    UHasselt, Faculty of Engineering Technology, Agoralaan, 3590 Diepenbeek, Belgium)

Abstract

The empirical Bayes (EB) method is widely acclaimed for crash hotspot identification (HSID), which integrates crash prediction model estimates and observed crash frequency to compute the expected crash frequency of a site. The traditional negative binomial (NB) models, often used to estimate crash predictive models, typically struggle with accounting for the unobserved heterogeneity in crash data. Complex extensions of the NB models are applied to overcome these shortcomings. These techniques also present new challenges, for instance, applying the EB procedures, especially for out-of-sample data. This study applies a random parameter negative binomial (RPNB) model within the EB framework for HSID using out-of-sample data, comparing its performance with a varying dispersion parameter NB model (VDPNB). The research also evaluates the potential for safety improvement (PSI) scores for both models and compares them with EB estimates using three generalised criteria: high crashes consistency test (HCCT), common sites consistency test (CSCT), and absolute rank differences test (ARDT). The results yield dual insights. Firstly, the study highlights associations between crash covariates and frequency, emphasising the significance of roadway geometric design characteristics (e.g., lane width, number of lanes, and parking type) and traffic volume. Some variables also influenced overdispersion parameters in the VDPNB model. In the RPNB model, annual average daily traffic (AADT) and lane width emerged as random parameters. Secondly, the HSID performance assessment revealed the superiority of the EB method over PSI. Notably, the RPNB model, compared to the VDPNB, demonstrates superior performance in EB estimates for HSID with out-of-sample data. This research recommends adopting the EB method with RPNB models for robust HSID.

Suggested Citation

  • Muhammad Wisal Khattak & Hans De Backer & Pieter De Winne & Tom Brijs & Ali Pirdavani, 2024. "Comparative Evaluation of Crash Hotspot Identification Methods: Empirical Bayes vs. Potential for Safety Improvement Using Variants of Negative Binomial Models," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1537-:d:1337436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olga Beatriz Barbosa Mendes & Ana Paula Camargo Larocca & Karla Rodrigues Silva & Ali Pirdavani, 2023. "Assessing the Performance of Highway Safety Manual (HSM) Predictive Models for Brazilian Multilane Highways," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    2. Ioannis Karamanlis & Andreas Nikiforiadis & George Botzoris & Alexandros Kokkalis & Socrates Basbas, 2023. "Towards Sustainable Transportation: The Role of Black Spot Analysis in Improving Road Safety," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
    3. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    4. Yajie Zou & John E. Ash & Byung-Jung Park & Dominique Lord & Lingtao Wu, 2018. "Empirical Bayes estimates of finite mixture of negative binomial regression models and its application to highway safety," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1652-1669, July.
    5. Thanapong Champahom & Sajjakaj Jomnonkwao & Chinnakrit Banyong & Watanya Nambulee & Ampol Karoonsoontawong & Vatanavongs Ratanavaraha, 2021. "Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    3. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    4. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    5. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    6. Lukuman Wahab & Haobin Jiang, 2019. "A comparative study on machine learning based algorithms for prediction of motorcycle crash severity," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-17, April.
    7. Thanapong Champahom & Chamroeun Se & Sajjakaj Jomnonkwao & Tassana Boonyoo & Vatanavongs Ratanavaraha, 2023. "A Comparison of Contributing Factors between Young and Old Riders of Motorcycle Crash Severity on Local Roads," Sustainability, MDPI, vol. 15(3), pages 1-24, February.
    8. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    9. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    10. Muhammad Ijaz & Lan Liu & Yahya Almarhabi & Arshad Jamal & Sheikh Muhammad Usman & Muhammad Zahid, 2022. "Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
    11. Changxi Ma & Dong Yang & Jibiao Zhou & Zhongxiang Feng & Quan Yuan, 2019. "Risk Riding Behaviors of Urban E-Bikes: A Literature Review," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    12. Stefan Hochguertel & Henry Ohlsson, 2009. "Compensatory inter vivos gifts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 993-1023.
    13. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    14. Chae, Dasol & Jung, Jaeyoung & Sohn, Keemin, 2018. "Facilitating an expectation-maximization (EM) algorithm to solve an integrated choice and latent variable (ICLV) model with fully correlated latent variables," Journal of choice modelling, Elsevier, vol. 26(C), pages 64-79.
    15. Lei Kang & Jon Fricker, 2013. "Bicyclist commuters’ choice of on-street versus off-street route segments," Transportation, Springer, vol. 40(5), pages 887-902, September.
    16. Hensher, David A., 2008. "Empirical approaches to combining revealed and stated preference data: Some recent developments with reference to urban mode choice," Research in Transportation Economics, Elsevier, vol. 23(1), pages 23-29, January.
    17. Milhan Moomen & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2023. "A Random Parameters Multinomial Logit Model Analysis of Median Barrier Crash Injury Severity on Wyoming Interstates," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    18. Sanjog Misra, 2005. "Generalized Reverse Discrete Choice Models," Quantitative Marketing and Economics (QME), Springer, vol. 3(2), pages 175-200, June.
    19. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    20. Le Goff, Alix & Monchambert, Guillaume & Raux, Charles, 2022. "Are solo driving commuters ready to switch to carpool? Heterogeneity of preferences in Lyon's urban area," Transport Policy, Elsevier, vol. 115(C), pages 27-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1537-:d:1337436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.