IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p911-d1323451.html
   My bibliography  Save this article

A Spatial Multicriteria Analysis for a Regional Assessment of Eligible Areas for Sustainable Agrivoltaic Systems in Italy

Author

Listed:
  • Grazia Fattoruso

    (Photovoltaic and Sensor Applications Laboratory (TERIN/FSD/SAFS Lab), ENEA Research Center Portici, P.le Enrico Fermi, 1, 80055 Portici, Italy)

  • Domenico Toscano

    (Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy)

  • Andrea Venturo

    (Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Alessandra Scognamiglio

    (Photovoltaic and Sensor Applications Laboratory (TERIN/FSD/SAFS Lab), ENEA Research Center Portici, P.le Enrico Fermi, 1, 80055 Portici, Italy)

  • Massimiliano Fabricino

    (Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Girolamo Di Francia

    (Photovoltaic and Sensor Applications Laboratory (TERIN/FSD/SAFS Lab), ENEA Research Center Portici, P.le Enrico Fermi, 1, 80055 Portici, Italy)

Abstract

Agrivoltaics’ share of renewable generation is relevant for countries to achieve their energy transition targets. Agrivoltaics is the dual and synergistic use of the land by agricultural crop production and photovoltaic (PV) systems. For their development around a country, a fundamental step is to determine which areas are suitable. This research work has developed a methodological framework for a reliable agrivoltaic land eligibility analysis at regional scale based on a spatial multicriteria analysis (i.e., GIS/MCDM-AHP). The challenging step has been to select a set of relevant criteria, also based on experts’ knowledge, able to capture the factors that can affect both the solar PV potential and agriculture-oriented factors. On the basis of these criteria, properly weighted, a 30 m-resolution land eligibility map for agrivoltaic systems has been generated for the NUTS-2 regions of Italy. We have found that Italy has an eligible area of 10.7 million hectares and a capacity potential of 6435 GW, assuming an installed power density of 0.6 MW/ha. Thus, a land coverage of only 1.24% of this area would allow to reach the national 80 GW target of new renewable capacity to achieve the country’s decarbonisation and energy transition objectives by 2030. The potential of installed capacity results at GW scale for the main land categories of arable land and permanent crops if they are just covered by only 5% with agrivoltaic systems. Thus, the impact of agrivoltaic systems development on land occupation can be considered marginal especially in relation to benefits generated for both the energy and agricultural sectors. Such a method is essentially targeted to regional authorities for planning the sustainable development of agrivoltaic systems at the local level.

Suggested Citation

  • Grazia Fattoruso & Domenico Toscano & Andrea Venturo & Alessandra Scognamiglio & Massimiliano Fabricino & Girolamo Di Francia, 2024. "A Spatial Multicriteria Analysis for a Regional Assessment of Eligible Areas for Sustainable Agrivoltaic Systems in Italy," Sustainability, MDPI, vol. 16(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:911-:d:1323451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Williams, Henry J. & Hashad, Khaled & Wang, Haomiao & Max Zhang, K., 2023. "The potential for agrivoltaics to enhance solar farm cooling," Applied Energy, Elsevier, vol. 332(C).
    2. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    3. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    4. Ramos-Fuentes, Isaac A. & Elamri, Yassin & Cheviron, Bruno & Dejean, Cyril & Belaud, Gilles & Fumey, Damien, 2023. "Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Lai, Vincent S. & Wong, Bo K. & Cheung, Waiman, 2002. "Group decision making in a multiple criteria environment: A case using the AHP in software selection," European Journal of Operational Research, Elsevier, vol. 137(1), pages 134-144, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    2. Rittick Maity & Kumarasamy Sudhakar & Amir Abdul Razak & Alagar Karthick & Dan Barbulescu, 2023. "Agrivoltaic: A Strategic Assessment Using SWOT and TOWS Matrix," Energies, MDPI, vol. 16(8), pages 1-18, April.
    3. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    4. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    5. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    6. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    7. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    8. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    9. Karami, Ezatollah, 2006. "Appropriateness of farmers' adoption of irrigation methods: The application of the AHP model," Agricultural Systems, Elsevier, vol. 87(1), pages 101-119, January.
    10. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    11. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2020. "Assessment of community sustainable livelihoods capitals for the implementation of alternative energy technologies in Uganda – Africa," Renewable Energy, Elsevier, vol. 160(C), pages 886-902.
    12. Ren, Hongbo & Gao, Weijun & Zhou, Weisheng & Nakagami, Ken'ichi, 2009. "Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan," Energy Policy, Elsevier, vol. 37(12), pages 5484-5493, December.
    13. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    14. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    15. Sobczyk, Eugeniusz J. & Kicki, Jerzy & Sobczyk, Wiktoria & Szuwarzyński, Marek, 2017. "Support of mining investment choice decisions with the use of multi-criteria method," Resources Policy, Elsevier, vol. 51(C), pages 94-99.
    16. Henao, Felipe & Cherni, Judith A. & Jaramillo, Patricia & Dyner, Isaac, 2012. "A multicriteria approach to sustainable energy supply for the rural poor," European Journal of Operational Research, Elsevier, vol. 218(3), pages 801-809.
    17. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.
    18. Manley, Dawn K. & Hines, Valerie A. & Jordan, Matthew W. & Stoltz, Ronald E., 2013. "A survey of energy policy priorities in the United States: Energy supply security, economics, and the environment," Energy Policy, Elsevier, vol. 60(C), pages 687-696.
    19. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    20. Leanda C. Garvie & David J. Lee & Biljana Kulišić, 2024. "Towards a Bioeconomy: Supplying Forest Residues for the Australian Market," Energies, MDPI, vol. 17(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:911-:d:1323451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.