IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p734-d1319157.html
   My bibliography  Save this article

Considering Historical Land Use When Estimating Soil Carbon Stock Changes of Transitional Croplands

Author

Listed:
  • Kenneth Copenhaver

    (CropGrower LLC, Tampa, FL 33606, USA)

  • Steffen Mueller

    (Bioenergy and Transportation Emissions Research Group, University of Illinois at Chicago, Chicago, IL 60607, USA)

Abstract

Understanding changes to soil organic carbon storage (SOC) requires knowledge of detailed land use history. Many satellite-based analyses of land use change have been conducted over short periods (typically 5 to 10 years) to investigate causality to a demand increase in an agricultural commodity. However, statistically significant changes in SOC are not readily observable during this time and typically require decades for meaningful differences to accrue. This study aimed to determine land use and soil organic carbon stocks on land parcels over 36 years (1985–2021) located in areas where historical land use transitions between cropland and non-cropland are prevalent. Aerial and satellite imagery were analyzed across 25,992 hectares in ten counties across the Corn Belt. Grower interviews were conducted to solicit feedback on the drivers of land use change. Finally, SOC analyses associated with land use changes were determined using two process-based models. Analysis showed that 371 of the parcels had remained in cropland, 611 parcels transitioned into non-cropland, and 18 parcels were identified as non-cropland. The grower surveys indicated that the most common reasons for returning land to crop was the difficulty getting land re-enrolled in the CRP and reduced cattle prices. Both the SALUS and GREET-CCLUB models were parameterized to assess soil carbon changes for the respective land use history, and both models returned consistent SOC increases at the county level over time.

Suggested Citation

  • Kenneth Copenhaver & Steffen Mueller, 2024. "Considering Historical Land Use When Estimating Soil Carbon Stock Changes of Transitional Croplands," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:734-:d:1319157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claassen, Roger & Bowman, Maria & McFadden, Jonathan & Smith, David & Wallander, Steven, 2018. "Tillage Intensity and Conservation Cropping in the United States," Economic Information Bulletin 277566, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engonwie Sharon Mbachan & Ngwa Martin Ngwabie, 2024. "Tillage practices in the north west region of Cameroon and their consequences on soil physio-chemical properties - a review," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 14(01), June.
    2. Julian M. Alston & Philip G. Pardey, 2020. "Innovation, Growth, and Structural Change in American Agriculture," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 123-165, National Bureau of Economic Research, Inc.
    3. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    4. Elizabeth Canales & Jason S. Bergtold & Jeffery R. Williams, 2024. "Conservation intensification under risk: An assessment of adoption, additionality, and farmer preferences," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 45-75, January.
    5. DeLaune, P.B & Mubvumba, P. & Ale, S. & Kimura, E., 2020. "Impact of no-till, cover crop, and irrigation on Cotton yield," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Chen, Le & Rejesus, Roderick M. & Aglasan, Serkan & Hagen, Stephen & Salas, William, 2022. "The Impact of No-Till Production on Agricultural Land Values in the US Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322445, Agricultural and Applied Economics Association.
    7. Gary D. Schnitkey & Sarah C. Sellars & Laura F. Gentry, 2024. "Cover crops, farm economics, and policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 46(2), pages 595-608, June.
    8. Che, Yuyuan & Rejesus, Roderick M. & Cavigelli, Michel A. & White, Kathryn E., 2022. "Long-Term Economic Impacts of No-Till Adoption," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322171, Agricultural and Applied Economics Association.
    9. Saavoss, Monica & Capehart, Thomas & McBride, William D & Effland, Anne, 2021. "Trends in Production Practices and Costs of the U.S. Corn Sector," Economic Research Report 327190, United States Department of Agriculture, Economic Research Service.
    10. Ladislav Menšík & David Kincl & Pavel Nerušil & Jan Srbek & Lukáš Hlisnikovský & Vladimír Smutný, 2020. "Water Erosion Reduction Using Different Soil Tillage Approaches for Maize ( Zea mays L.) in the Czech Republic," Land, MDPI, vol. 9(10), pages 1-14, September.
    11. Burnett, J. Wesley & Szmurlo, Daniel & Callahan, Scott, 2024. "Farmland Rental and Conservation Practice Adoption," Economic Information Bulletin 341821, United States Department of Agriculture, Economic Research Service.
    12. David J. Pannell & Roger Claassen, 2020. "The Roles of Adoption and Behavior Change in Agricultural Policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 31-41, March.
    13. Le Chen & Roderick M. Rejesus & Serkan Aglasan & Stephen Hagen & William Salas, 2023. "The impact of no‐till on agricultural land values in the United States Midwest," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 760-783, May.
    14. repec:ags:aaea22:335830 is not listed on IDEAS
    15. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    16. Fengxia Dong, 2022. "Cover Crops, Drought, Yield, and Risk: An Analysis of US Soybean Production," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 241-267, National Bureau of Economic Research, Inc.
    17. Huang, Yawen & Tao, Bo & Yang, Yanjun & Zhu, Xiaochen & Yang, Xiaojuan & Grove, John H. & Ren, Wei, 2022. "Simulating no-tillage effects on crop yield and greenhouse gas emissions in Kentucky corn and soybean cropping systems: 1980–2018," Agricultural Systems, Elsevier, vol. 197(C).
    18. Wallander, Steven & Smith, David & Bowman, Maria & Claassen, Roger, 2021. "Cover Crop Trends, Programs, and Practices in the United States," Economic Information Bulletin 309562, United States Department of Agriculture, Economic Research Service.
    19. Chen, Bowen & Gramig, Ben & Yun, Seong Do, 2020. "A Causal Analysis of the Effect of Conservation Tillage on U.S. Corn and Soybean Yield and Profitability," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304296, Agricultural and Applied Economics Association.
    20. Burnett, Wesley & Szmurlo, Daniel & Callahan, Scott, 2022. "Land tenure and conservation adoption: An analysis of contracts and incentives," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322244, Agricultural and Applied Economics Association.
    21. Barreiro-Hurle, Jesus & Dessart, Francois J. & Rommel, Jens & Czajkowski, Mikołaj & Espinosa-Goded, Maria & Rodriguez-Entrena, Macario & Thomas, Fabian & Zagorska, Katarzyna, 2023. "Willing or complying? The delicate interplay between voluntary and mandatory interventions to promote farmers' environmental behavior," Food Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:734-:d:1319157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.