IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6023-d1112171.html
   My bibliography  Save this article

A Mixed-Method Approach to Determine the Successful Factors Affecting the Criticality Level of Intermediate and Final Products on National Basis: A Case Study from Saudi Arabia

Author

Listed:
  • Aiman Fadil

    (Faculty of Mechanical and Manufacturing Engineering, Dublin City University, D09 W6F4 Dublin, Ireland)

  • Paul Davis

    (Business School, Dublin City University, D09 E432 Dublin, Ireland)

  • John Geraghty

    (Faculty of Mechanical and Manufacturing Engineering, Dublin City University, D09 W6F4 Dublin, Ireland)

Abstract

COVID-19, Brexit, war, and some other similar cases will leave/have left us with a lesson that has had an impact on the supply chains of almost all product types. Countries have now recognized that some products cannot be sustained in a situation of uncertainty. This research covers the gap in understanding and identifying the successful factors affecting the criticality level of supply required of intermediate and final products (IFP) at the national level. It investigates the relationship between two factors: the casual factor supply risk (independent factor); and the impacted (dependent factors) political, economic, sociocultural, and technological (PEST) factors in terms of identifying critical products using the principle of Resource Dependency Theory (RDT). A literature review was conducted, followed by a mixed-method approach. Semi-structured interviews with 23 Saudi experts were carried out initially; then, a questionnaire was shared with 152 Saudi experts in different sectors. The qualitative study identified 30 key measurement variables for both factors, in which 19 variables were confirmed using the factor analysis (FA) technique.

Suggested Citation

  • Aiman Fadil & Paul Davis & John Geraghty, 2023. "A Mixed-Method Approach to Determine the Successful Factors Affecting the Criticality Level of Intermediate and Final Products on National Basis: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6023-:d:1112171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blengini, Gian Andrea & Nuss, Philip & Dewulf, Jo & Nita, Viorel & Peirò, Laura Talens & Vidal-Legaz, Beatriz & Latunussa, Cynthia & Mancini, Lucia & Blagoeva, Darina & Pennington, David & Pellegrini,, 2017. "EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements," Resources Policy, Elsevier, vol. 53(C), pages 12-19.
    2. Hashimzade, Nigar & Myles, Gareth & Black, John, 2017. "A Dictionary of Economics," OUP Catalogue, Oxford University Press, edition 5, number 9780198759430.
    3. Jin, Yanya & Kim, Junbeum & Guillaume, Bertrand, 2016. "Review of critical material studies," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 77-87.
    4. Glöser, Simon & Tercero Espinoza, Luis & Gandenberger, Carsten & Faulstich, Martin, 2015. "Raw material criticality in the context of classical risk assessment," Resources Policy, Elsevier, vol. 44(C), pages 35-46.
    5. Xiaoyue Du & T. E. Graedel, 2011. "Global Rare Earth In‐Use Stocks in NdFeB Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 836-843, December.
    6. Liao, Shujie & Wang, Fengxia & Wu, Ting & Pan, Wei, 2016. "Crude oil price decision under considering emergency and release of strategic petroleum reserves," Energy, Elsevier, vol. 102(C), pages 436-443.
    7. Galos, Krzysztof & Lewicka, Ewa & Burkowicz, Anna & Guzik, Katarzyna & Kot-Niewiadomska, Alicja & Kamyk, Jarosław & Szlugaj, Jarosław, 2021. "Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland," Resources Policy, Elsevier, vol. 70(C).
    8. Bradley Jones, 2018. "Central Bank Reserve Management and International Financial Stability—Some Post-Crisis Reflections," IMF Working Papers 2018/031, International Monetary Fund.
    9. Achzet, Benjamin & Helbig, Christoph, 2013. "How to evaluate raw material supply risks—an overview," Resources Policy, Elsevier, vol. 38(4), pages 435-447.
    10. Manoj Hudnurkar & Urvashi Rathod & Suresh Kumar Jakhar, 2016. "Multi-criteria decision framework for supplier classification in collaborative supply chains," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 65(5), pages 622-640, June.
    11. Zhang, Xiao-Bing & Qin, Ping & Chen, Xiaolan, 2017. "Strategic oil stockpiling for energy security: The case of China and India," Energy Economics, Elsevier, vol. 61(C), pages 253-260.
    12. Arendt, Rosalie & Muhl, Marco & Bach, Vanessa & Finkbeiner, Matthias, 2020. "Criticality assessment of abiotic resource use for Europe– application of the SCARCE method," Resources Policy, Elsevier, vol. 67(C).
    13. Xiaodong Guo & Chen Hao & Shuwen Niu, 2020. "Analysis of Oil Import Risk and Strategic Petroleum Reserve: The Case of China," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    14. Roelich, Katy & Dawson, David A. & Purnell, Phil & Knoeri, Christof & Revell, Ruairi & Busch, Jonathan & Steinberger, Julia K., 2014. "Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity," Applied Energy, Elsevier, vol. 123(C), pages 378-386.
    15. Helbig, Christoph & Wietschel, Lars & Thorenz, Andrea & Tuma, Axel, 2016. "How to evaluate raw material vulnerability - An overview," Resources Policy, Elsevier, vol. 48(C), pages 13-24.
    16. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    17. Lino Briguglio & Gordon Cordina & Nadia Farrugia & Stephanie Vella, 2009. "Economic Vulnerability and Resilience: Concepts and Measurements," Oxford Development Studies, Taylor & Francis Journals, vol. 37(3), pages 229-247.
    18. Breisinger, Clemens & Ecker, Olivier & Maystadt, Jean-François & Trinh Tan, Jean-François & Al-Riffai, Perrihan & Bouzar, Khalida & Sma, Abdelkarim & Abdelgadir, Mohamed, 2014. "Food security policies for building resilience to conflict," IFPRI book chapters, in: Fan, Shenggen & Pandya-Lorch, Rajul & Yosef, Sivan (ed.), 2013 Global Food Policy Report, chapter 5, International Food Policy Research Institute (IFPRI).
    19. Manoj Hudnurkar & Urvashi Rathod & Suresh Kumar Jakhar, 2016. "Multi-criteria decision framework for supplier classification in collaborative supply chains," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 65(5), pages 622-640, June.
    20. Gupta, Eshita, 2008. "Oil vulnerability index of oil-importing countries," Energy Policy, Elsevier, vol. 36(3), pages 1195-1211, March.
    21. Felipe Sanchez Garzon & Manon Enjolras & Mauricio Camargo & Laure Morel, 2019. "A green procurement methodology based on Kraljic Matrix for supplier`s evaluation and selection: a case study from the chemical sector," Post-Print hal-02151353, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Lewicka & Katarzyna Guzik & Krzysztof Galos, 2021. "On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources," Resources, MDPI, vol. 10(5), pages 1-21, May.
    2. Hatayama, Hiroki & Tahara, Kiyotaka, 2018. "Adopting an objective approach to criticality assessment: Learning from the past," Resources Policy, Elsevier, vol. 55(C), pages 96-102.
    3. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    4. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    5. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    6. Simon Glöser-Chahoud & Luis Tercero Espinoza & Rainer Walz & Martin Faulstich, 2016. "Taking the Step towards a More Dynamic View on Raw Material Criticality: An Indicator Based Analysis for Germany and Japan," Resources, MDPI, vol. 5(4), pages 1-16, December.
    7. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    8. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).
    9. Luca Ciacci & Philip Nuss & Barbara K. Reck & T. T. Werner & T. E. Graedel, 2016. "Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results," Resources, MDPI, vol. 5(4), pages 1-8, September.
    10. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    11. Alicja Kot-Niewiadomska & Krzysztof Galos & Jarosław Kamyk, 2021. "Safeguarding of Key Minerals Deposits as a Basis of Sustainable Development of Polish Economy," Resources, MDPI, vol. 10(5), pages 1-32, May.
    12. Lapko, Yulia & Trucco, Paolo, 2018. "Influence of power regimes on identification and mitigation of material criticality: The case of platinum group metals in the automotive sector," Resources Policy, Elsevier, vol. 59(C), pages 360-370.
    13. Masoudi, S.M. & Ezzati, E. & Rashidnejad-Omran, N. & Moradzadeh, Ali, 2017. "Geoeconomics of fluorspar as strategic and critical mineral in Iran," Resources Policy, Elsevier, vol. 52(C), pages 100-106.
    14. Vidal, Rosario & Alberola-Borràs, Jaume-Adrià & Mora-Seró, Iván, 2020. "Abiotic depletion and the potential risk to the supply of cesium," Resources Policy, Elsevier, vol. 68(C).
    15. Mitja Mori & Rok Stropnik & Mihael Sekavčnik & Andrej Lotrič, 2021. "Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    16. Jasiński, Dominik & Cinelli, Marco & Dias, Luis C. & Meredith, James & Kirwan, Kerry, 2018. "Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis," Resources Policy, Elsevier, vol. 58(C), pages 150-158.
    17. Dewulf, Jo & Blengini, Gian Andrea & Pennington, David & Nuss, Philip & Nassar, Nedal T., 2016. "Criticality on the international scene: Quo vadis?," Resources Policy, Elsevier, vol. 50(C), pages 169-176.
    18. Griffin, Gillian & Gaustad, Gabrielle & Badami, Kedar, 2019. "A framework for firm-level critical material supply management and mitigation," Resources Policy, Elsevier, vol. 60(C), pages 262-276.
    19. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    20. Pell, Robert S. & Wall, Frances & Yan, Xiaoyu & Bailey, Gwendolyn, 2019. "Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements," Resources Policy, Elsevier, vol. 62(C), pages 472-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6023-:d:1112171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.