IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4178-d1080465.html
   My bibliography  Save this article

Smart Transportation Behavior through the COVID-19 Pandemic: A Ride-Hailing System in Iran

Author

Listed:
  • Atour Taghipour

    (Faculty of International Business, Normandy University, 76600 Le Havre, France)

  • Mohammad Ramezani

    (Department of Industrial Management, Tarbiat Modares University, Tehran 14115, Iran)

  • Moein Khazaei

    (Department of Industrial Management, Tarbiat Modares University, Tehran 14115, Iran)

  • Vahid Roohparvar

    (Department of Industrial Management, Tarbiat Modares University, Tehran 14115, Iran)

  • Erfan Hassannayebi

    (Department of Industrial Engineering, Sharif University of Technology, Tehran 11155-9161, Iran)

Abstract

During the COVID-19 pandemic, significant changes occurred in customer behavior, especially in traffic and urban transmission systems. In this context, there is a need for more scientific research and managerial approaches to develop behavior-based smart transportation solutions to deal with recent changes in customers, drivers, and traffic behaviors, including the volume of traffic and traffic routes. This research has tried to find a comprehensive view of novel travel behavior in different routes using a new social network analysis method. Our research is rooted in graph theory/network analysis and application of centrality concepts in social network analysis, particularly in the ride-hailing transportation systems under monumental competition. In this study, a big city, with near to ten million habitants (Tehran), is considered. All city areas were studied and clustered based on the primary measures of centrality, including degree centrality, Katz centrality, special vector centrality, page rank centrality, proximity centrality, and intermediate centrality. Our data were the trips of this system in Tehran, where the nodes in this network represent Tehran’s districts, and the connection between the two districts indicates the trips made between those two districts. Also, each link’s weight is the number of trips between the two nodes (district). The districts of Tehran were ranked in the smart transportation network based on six criteria: degree centrality, degree centrality of input, degree centrality of output, special vector centrality, hub, and reference points. Finally, according to comprehensive data-driven analysis, the studied company was suggested to create shared value and sustainability through the platform to perform a legitimate system to meet the new challenges. Our proposed system can help managers and governments to develop a behavior-based smart transportation system for big cities.

Suggested Citation

  • Atour Taghipour & Mohammad Ramezani & Moein Khazaei & Vahid Roohparvar & Erfan Hassannayebi, 2023. "Smart Transportation Behavior through the COVID-19 Pandemic: A Ride-Hailing System in Iran," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4178-:d:1080465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodier, Caroline, 2018. "The Effects of Ride Hailing Services on Travel and Associated Greenhouse Gas Emissions," Institute of Transportation Studies, Working Paper Series qt2rv570tt, Institute of Transportation Studies, UC Davis.
    2. Mahmoud Dehghan Nayeri & Moein Khazaei & Dania Abdolahbeigi, 2022. "The drivers of success in new-service development: rough set theory approach," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 43(4), pages 421-439.
    3. Contreras, Seth D. & Paz, Alexander, 2018. "The effects of ride-hailing companies on the taxicab industry in Las Vegas, Nevada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 63-70.
    4. Alan Jenn, 2020. "Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services," Nature Energy, Nature, vol. 5(7), pages 520-525, July.
    5. Pan, Xin & Ning, Lutao & Shi, Lifang, 2019. "Visualisation and determinations of hub locations: Evidence from China's interregional trade network," Research in Transportation Economics, Elsevier, vol. 75(C), pages 36-44.
    6. Anton Braverman & J. G. Dai & Xin Liu & Lei Ying, 2019. "Empty-Car Routing in Ridesharing Systems," Operations Research, INFORMS, vol. 67(5), pages 1437-1452, September.
    7. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    8. Xijun Zhang & Qirui Zhang & Zhanting Yuan & Chenhui Wang & Lijuan Zhang, 2020. "The Research on Planning of Taxi Sharing Route and Sharing Expenses," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, February.
    9. Atour Taghipour & Babak Daneshvar Rouyendegh & Aylin Ünal & Sujan Piya, 2022. "Selection of Suppliers for Speech Recognition Products in IT Projects by Combining Techniques with an Integrated Fuzzy MCDM," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    10. Atour Taghipour & Moein Khazaei & Adel Azar & Ali Rajabzadeh Ghatari & Mostafa Hajiaghaei-Keshteli & Mohammad Ramezani, 2022. "Creating Shared Value and Strategic Corporate Social Responsibility through Outsourcing within Supply Chain Management," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    11. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    12. Tsuyoshi Deguchi & Katsuhide Takahashi & Hideki Takayasu & Misako Takayasu, 2014. "Hubs and Authorities in the World Trade Network Using a Weighted HITS Algorithm," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    13. Christina Kakderi & Panagiotis Tsarchopoulos & Nicos Komninos & Anastasia Panori, 2019. "Smart Cities on the Cloud," Progress in IS, in: Anastasia Stratigea & Dimitris Kavroudakis (ed.), Mediterranean Cities and Island Communities, chapter 0, pages 57-80, Springer.
    14. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between the Regular Use of ICT Based Mobility Services and the Bicycle Mode Choice in Tehran and Cairo," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    2. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    4. Aguilera-García, Álvaro & Gomez, Juan & Velázquez, Guillermo & Vassallo, Jose Manuel, 2022. "Ridesourcing vs. traditional taxi services: Understanding users’ choices and preferences in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 161-178.
    5. Adam Millard-Ball & Liwei Liu & Whitney Hansen & Drew Cooper & Joe Castiglione, 2023. "Where ridehail drivers go between trips," Transportation, Springer, vol. 50(5), pages 1959-1981, October.
    6. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    7. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    8. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    9. Nguyen-Phuoc, Duy Quy & Vo, Nguyen S. & Su, Diep Ngoc & Nguyen, Vinh Hoang & Oviedo-Trespalacios, Oscar, 2021. "What makes passengers continue using and talking positively about ride-hailing services? The role of the booking app and post-booking service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 367-384.
    10. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    11. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    12. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    13. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    14. Nguyen-Phuoc, Duy Quy & Su, Diep Ngoc & Nguyen, Minh Hieu & Vo, Nguyen S. & Oviedo-Trespalacios, Oscar, 2022. "Factors influencing intention to use on-demand shared ride-hailing services in Vietnam: risk, cost or sustainability?," Journal of Transport Geography, Elsevier, vol. 99(C).
    15. Nadine Kostorz & Eva Fraedrich & Martin Kagerbauer, 2021. "Usage and User Characteristics—Insights from MOIA, Europe’s Largest Ridepooling Service," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    16. Wenyuan Zhou & Xuanrong Li & Zhenguo Shi & Bingjie Yang & Dongxu Chen, 2023. "Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    17. Wenting Li & Amer Shalaby & Khandker Nurul Habib, 2022. "Exploring the correlation between ride-hailing and multimodal transit ridership in toronto," Transportation, Springer, vol. 49(3), pages 765-789, June.
    18. Lazarus, Jessica R. & Caicedo, Juan D. & Bayen, Alexandre M. & Shaheen, Susan A., 2021. "To Pool or Not to Pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 199-222.
    19. Lisa Dang & Widar von Arx & Jonas Frölicher, 2021. "The Impact of On-Demand Collective Transport Services on Sustainability: A Comparison of Various Service Options in a Rural and an Urban Area of Switzerland," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    20. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4178-:d:1080465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.