IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2363-d1049007.html
   My bibliography  Save this article

Public Transport Prioritization and Descriptive Criteria-Based Urban Sections Classification on Arterial Streets

Author

Listed:
  • Yuriy Royko

    (Transport Technology Department, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Yevhen Fornalchyk

    (Transport Technology Department, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Eugeniusz Koda

    (Institute of Civil Engineering, Warsaw University of Life Sciences, SGGW, 02-787 Warsaw, Poland)

  • Ivan Kernytskyy

    (Institute of Civil Engineering, Warsaw University of Life Sciences, SGGW, 02-787 Warsaw, Poland)

  • Oleh Hrytsun

    (Transport Technology Department, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Romana Bura

    (Transport Technology Department, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Piotr Osinski

    (Institute of Civil Engineering, Warsaw University of Life Sciences, SGGW, 02-787 Warsaw, Poland)

  • Anna Markiewicz

    (Institute of Civil Engineering, Warsaw University of Life Sciences, SGGW, 02-787 Warsaw, Poland)

  • Tomasz Wierzbicki

    (Institute of Civil Engineering, Warsaw University of Life Sciences, SGGW, 02-787 Warsaw, Poland)

  • Ruslan Barabash

    (Faculty of Mechanical and Power Engineering, Lviv National University of Nature Management (Lviv National Agrarian University), 80381 Dublany, Ukraine)

  • Ruslan Humenuyk

    (Faculty of Mechanical and Power Engineering, Lviv National University of Nature Management (Lviv National Agrarian University), 80381 Dublany, Ukraine)

  • Pavlo Polyansky

    (Department of Mechanics, Mykolayiv National Agrarian University, 54040 Mykolayiv, Ukraine)

Abstract

The present paper is aimed at improving minimization methods in traffic flows, particularly reducing the costs of civil transportation through sections of the transport network by giving priority to public transport in densely developed areas. In cities with a radial and radial–circular planning scheme of the road network, where arterial traffic flows converge in the central part, the challenge of street congestion with traffic often arises. As a result, delays of all types of vehicles increase, which causes excessive travel time for users of private and public transport. In this regard, it is proposed to divide the sections of the transport network into eight types based on their geometric parameters and traffic conditions. This differentiation of sections improves the existing methods for determining the spatial delay of traffic flows on sections of the transport network with different parameters. It was achieved by considering the duration of vehicles passing signalized intersections and pedestrian crosswalks and the sections of streets between them, while simultaneously recording the duration of public transport movement, as well as the time they spend at stopping points, using GPS receivers. The results of onsite monitoring and further computations revealed that there are particular urban sections with specific, different distances between adjacent stop lines that are critical for public transport operation. Furthermore, based on the delay criterion, there were three different passage modes proposed to improve the efficiency of the traffic.

Suggested Citation

  • Yuriy Royko & Yevhen Fornalchyk & Eugeniusz Koda & Ivan Kernytskyy & Oleh Hrytsun & Romana Bura & Piotr Osinski & Anna Markiewicz & Tomasz Wierzbicki & Ruslan Barabash & Ruslan Humenuyk & Pavlo Polyan, 2023. "Public Transport Prioritization and Descriptive Criteria-Based Urban Sections Classification on Arterial Streets," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2363-:d:1049007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Chiabaut & Anais Barcet, 2019. "Demonstration and evaluation of an intermittent bus lane strategy," Public Transport, Springer, vol. 11(3), pages 443-456, October.
    2. Penghui Zhao & Jianxiao Ma & Chubo Xu & Chuwei Zhao & Zifan Ni, 2022. "Research on the Safety of the Left Hard Shoulder in a Multi-Lane Highway Based on Safety Performance Function," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    3. Ivan Kernytskyy & Yevheniia Yakovenko & Orest Horbay & Maryana Ryviuk & Ruslan Humenyuk & Yaroslav Sholudko & Yurii Voichyshyn & Łukasz Mazur & Piotr Osiński & Konstantin Rusakov & Eugeniusz Koda, 2021. "Development of Comfort and Safety Performance of Passenger Seats in Large City Buses," Energies, MDPI, vol. 14(22), pages 1-13, November.
    4. Vojtěch NOVOTNà & Dagmar KOČà RKOVà & Ondřej HAVLENA & Martin JACURA, 2016. "Detailed Analysis Of Public Bus Vehicle Ride On Urban Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 11(4), pages 43-55, December.
    5. Jonathan M. Bunker, 2018. "High volume bus stop upstream average waiting time for working capacity and quality of service," Public Transport, Springer, vol. 10(2), pages 311-333, August.
    6. Tanvir Uddin Chowdhury & Peter Y. Park & Kevin Gingerich, 2022. "Estimation of Appropriate Acceleration Lane Length for Safe and Efficient Truck Platooning Operation on Freeway Merge Areas," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    7. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    8. Abebe Dress Beza & Mohammad Maghrour Zefreh & Adam Torok, 2022. "Impacts of Different Types of Automated Vehicles on Traffic Flow Characteristics and Emissions: A Microscopic Traffic Simulation of Different Freeway Segments," Energies, MDPI, vol. 15(18), pages 1-19, September.
    9. Graham Currie & Majid Sarvi & Bill Young, 2007. "A new approach to evaluating on-road public transport priority projects: balancing the demand for limited road-space," Transportation, Springer, vol. 34(4), pages 413-428, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murat Bayrak & S. Ilgin Guler, 2021. "Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics," Public Transport, Springer, vol. 13(2), pages 325-347, June.
    2. Duy Q. Nguyen-Phuoc & William Young & Graham Currie & Chris Gruyter, 2020. "Traffic congestion relief associated with public transport: state-of-the-art," Public Transport, Springer, vol. 12(2), pages 455-481, June.
    3. Victoria Gitelman & Anna Korchatov & Wafa Elias, 2020. "An Examination of the Safety Impacts of Bus Priority Routes in Major Israeli Cities," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Takao Dantsuji & Daisuke Fukuda & Nan Zheng, 2021. "Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach," Transportation, Springer, vol. 48(2), pages 673-697, April.
    5. Sewmini Jayatilake & Jonathan M. Bunker & Ashish Bhaskar & Marc Miska, 2021. "Time–space analysis to evaluate cell-based quality of service in bus rapid transit station platforms through passenger-specific area," Public Transport, Springer, vol. 13(2), pages 395-427, June.
    6. Yunqiang Xue & Lin Cheng & Kuang Wang & Jing An & Hongzhi Guan, 2020. "System Dynamics Analysis of the Relationship between Transit Metropolis Construction and Sustainable Development of Urban Transportation—Case Study of Nanchang City, China," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    7. Mateusz Szarata & Piotr Olszewski & Lesław Bichajło, 2021. "Simulation Study of Dynamic Bus Lane Concept," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
    8. Marek Guzek & Rafał S. Jurecki & Wojciech Wach, 2022. "Vehicle and Traffic Safety," Energies, MDPI, vol. 15(13), pages 1-4, June.
    9. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Kim, Inhi & Young, William, 2018. "Modelling the net traffic congestion impact of bus operations in Melbourne," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 1-12.
    10. Martens, Karel, 2018. "Ageing, impairments and travel: Priority setting for an inclusive transport system," Transport Policy, Elsevier, vol. 63(C), pages 122-130.
    11. Mohammad Sadrani & Ahmad Reza Jafarian-Moghaddam & Mohsen Aboutalebi Esfahani & Amir Masoud Rahimi, 2023. "Designing limited-stop bus services for minimizing operator and user costs under crowding conditions," Public Transport, Springer, vol. 15(1), pages 97-128, March.
    12. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    13. Xingxing Wang & Peilin Ye & Yujie Zhang & Hongjun Ni & Yelin Deng & Shuaishuai Lv & Yinnan Yuan & Yu Zhu, 2022. "Parameter Optimization Method for Power System of Medium-Sized Bus Based on Orthogonal Test," Energies, MDPI, vol. 15(19), pages 1-26, October.
    14. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.
    15. Maksymilian Mądziel, 2023. "Future Cities Carbon Emission Models: Hybrid Vehicle Emission Modelling for Low-Emission Zones," Energies, MDPI, vol. 16(19), pages 1-16, October.
    16. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    17. Arasan, V. Thamizh & Vedagiri, P., 2009. "Planning for dedicated bus lanes on roads carrying Highly heterogeneous traffic," 50th Annual Transportation Research Forum, Portland, Oregon, March 16-18, 2009 207621, Transportation Research Forum.
    18. Maksymilian Mądziel & Tiziana Campisi, 2023. "Investigation of Vehicular Pollutant Emissions at 4-Arm Intersections for the Improvement of Integrated Actions in the Sustainable Urban Mobility Plans (SUMPs)," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    19. Bayan Bevrani & Robert L. Burdett & Ashish Bhaskar & Prasad K. D. V. Yarlagadda, 2020. "A multi commodity flow model incorporating flow reduction functions," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 693-723, September.
    20. Miriam Rocha & Cristina Albuquerque Moreira Silva & Reinaldo Germano Santos Junior & Michel Anzanello & Gabrielli Harumi Yamashita & Luis Antonio Lindau, 2020. "Selecting the most relevant variables towards clustering bus priority corridors," Public Transport, Springer, vol. 12(3), pages 587-609, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2363-:d:1049007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.