IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1243-d1030066.html
   My bibliography  Save this article

Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China

Author

Listed:
  • Yonghui Wang

    (Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China
    College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China)

  • Jin Li

    (Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China
    College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China)

  • Kaixuan Qian

    (Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China
    College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China)

  • Mao Ye

    (Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China
    College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China)

Abstract

This study quantitatively analyzes the effects of flooding on the growth and species diversity of riparian forests along the Yarkant River and the Tarim River, Xinjiang, in northwest China, and provides important information for the efficient utilization of water and water resource management in arid regions. Monitoring of species diversity of riparian forests was conducted every year from 2016 to 2019 in the Xiamale forest district in the lower reaches of the Yarkant River, and in the Shaya forest district and the lunnan forest district in the upper and middle reaches of the Tarim River. The Pielou index, Shannon–Wiener index, Simpson index, and importance value were used to analyze the influence of flooding. The results showed the following: (1) After three years of flooding, indices for the lower reaches of the Yarkant River and Tarim River were significantly increased and 11 new plant species appeared. (2) With increasing distance from the river channel, plant density and species diversity decreased. Flooding trends are the main factors affecting the distribution of plant species and water is the main restricting factor that influences plant growth in arid areas; thus, desert riparian forests improved significantly after flooding. (3) Flooding increases the regeneration capacity and species diversity of plant communities in desert riparian forests. In order to maintain the current trend of ecological improvement, flooding irrigation must continue.

Suggested Citation

  • Yonghui Wang & Jin Li & Kaixuan Qian & Mao Ye, 2023. "Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1243-:d:1030066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaojian Chen & Yuanyuan Cao & Jun Li, 2021. "The Effect of Water Rights Trading Policy on Water Resource Utilization Efficiency: Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    2. Rosegrant, Mark W. & Binswanger, Hans P., 1994. "Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation," World Development, Elsevier, vol. 22(11), pages 1613-1625, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanshan Wang & Qiting Zuo & Kefa Zhou & Jinlin Wang & Wei Wang, 2023. "Predictions of Land Use/Land Cover Change and Landscape Pattern Analysis in the Lower Reaches of the Tarim River, China," Land, MDPI, vol. 12(5), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    2. Wenjing Wang & Xin Zhao & Junwei Xu & Shenjie Zhou, 2025. "Drivers, performance evaluation and influencing factors of water resources utilisation—based on the theory of sustainable development," Natural Resources Forum, Blackwell Publishing, vol. 49(3), pages 3164-3196, August.
    3. Thomas Vendryes, 2014. "Peasants Against Private Property Rights: A Review Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 971-995, December.
    4. Richard Hornbeck & Pinar Keskin, 2015. "Does Agriculture Generate Local Economic Spillovers? Short-Run and Long-Run Evidence from the Ogallala Aquifer," American Economic Journal: Economic Policy, American Economic Association, vol. 7(2), pages 192-213, May.
    5. Reto Foellmi & Urs Meister, 2012. "Enhancing the Efficiency of Water Supply—Product Market Competition Versus Trade," Journal of Industry, Competition and Trade, Springer, vol. 12(3), pages 299-324, September.
    6. Molden, David & Sakthivadivel, Ramasamy & Samad, Madar & Burton, Martin, 2005. "Phases of river basin development: the need for adaptive institutions," Book Chapters,, International Water Management Institute.
    7. Narain, V., 2009. "Water rights system as a demand management option: potentials, constraints and prospects," IWMI Books, Reports H042163, International Water Management Institute.
    8. Ansink, Erik & Weikard, Hans-Peter, 2009. "Contested water rights," European Journal of Political Economy, Elsevier, vol. 25(2), pages 247-260, June.
    9. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
    10. Marshall, Elizabeth P. & Weinberg, Marca, 2012. "Baselines in Environmental Markets: Tradeoffs Between Cost and Additionality," Economic Brief 138922, United States Department of Agriculture, Economic Research Service.
    11. Yan Liu & Chao Shang, 2022. "Application of Blockchain Technology in Agricultural Water Rights Trade Management," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    12. Wichelns, Dennis, 1999. "An economic model of waterlogging and salinization in arid regions," Ecological Economics, Elsevier, vol. 30(3), pages 475-491, September.
    13. Varela-Ortega, Consuelo & M. Sumpsi, Jose & Garrido, Alberto & Blanco, Maria & Iglesias, Eva, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, Blackwell, vol. 19(1-2), pages 193-202, September.
    14. Juárez-Torres, Miriam & Sánchez-Aragón, Leonardo & Vedenov, Dmitry, . "Weather Derivatives and Water Management in Developing Countries: An Application for an Irrigation District in Central Mexico," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2).
    15. Ereney Hadjigeorgalis, 2009. "A Place for Water Markets: Performance and Challenges," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 50-67.
    16. Molle, Francois, 2007. "Thailand’s ‘free water’: rationale for a water charge and policy shifts," Book Chapters,, International Water Management Institute.
    17. Pingali, Prabhu L. & Rosegrant, Mark W., 1995. "Agricultural commercialization and diversification: processes and policies," Food Policy, Elsevier, vol. 20(3), pages 171-185, June.
    18. Bjornlund, Henning, 2003. "Farmer participation in markets for temporary and permanent water in southeastern Australia," Agricultural Water Management, Elsevier, vol. 63(1), pages 57-76, November.
    19. Ringler, Claudia & Rosegrant, Mark W., 1999. "Impact on food security and rural development of reallocating water from agriculture:," EPTD discussion papers 47, International Food Policy Research Institute (IFPRI).
    20. Chieko Umetsu & Ujjayant Chakravorty, 1998. "Water conveyance, return flows and technology choice," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 181-191, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1243-:d:1030066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.