IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15889-d1279155.html
   My bibliography  Save this article

Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review

Author

Listed:
  • Nkulu Rolly Kabange

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Youngho Kwon

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • So-Myeong Lee

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Ju-Won Kang

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Jin-Kyung Cha

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Hyeonjin Park

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Gamenyah Daniel Dzorkpe

    (Council for Scientific and Industrial Research (CSIR), Crops Research Institute, Kumasi 3785, Ghana)

  • Dongjin Shin

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Ki-Won Oh

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

  • Jong-Hee Lee

    (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea)

Abstract

Agriculture is the second most important greenhouse gas (GHG: methane (CH 4 ) and nitrous oxide (N 2 O) emissions)-emitting sector after the energy sector. Agriculture is also recognized as the source and sink of GHGs. The share of agriculture to the global GHG emission records has been widely investigated, but the impact on our food production systems has been overlooked for decades until the recent climate crisis. Livestock production and feed, nitrogen-rich fertilizers and livestock manure application, crop residue burning, as well as water management in flood-prone cultivation areas are components of agriculture that produce and emit most GHGs. Although agriculture produces 72–89% less GHGs than other sectors, it is believed that reducing GHG emissions in agriculture would considerably lower its share of the global GHG emission records, which may lead to enormous benefits for the environment and food production systems. However, several diverging and controversial views questioning the actual role of plants in the current global GHG budget continue to nourish the debate globally. We must acknowledge that considering the beneficial roles of major GHGs to plants at a certain level of accumulation, implementing GHG mitigation measures from agriculture is indeed a complex task. This work provides a comprehensive review of agriculture-related GHG production and emission mechanisms, as well as GHG mitigation measures regarded as potential solutions available in the literature. This review also discusses in depth the significance and the dynamics of mitigation measures regarded as game changers with a high potential to enhance, in a sustainable manner, the resilience of agricultural systems. Some of the old but essential agricultural practices and livestock feed techniques are revived and discussed. Agricultural GHG mitigation approaches discussed in this work can serve as game changers in the attempt to reduce GHG emissions and alleviate the impact of climate change through sustainable agriculture and informed decision-making.

Suggested Citation

  • Nkulu Rolly Kabange & Youngho Kwon & So-Myeong Lee & Ju-Won Kang & Jin-Kyung Cha & Hyeonjin Park & Gamenyah Daniel Dzorkpe & Dongjin Shin & Ki-Won Oh & Jong-Hee Lee, 2023. "Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review," Sustainability, MDPI, vol. 15(22), pages 1-41, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15889-:d:1279155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thai-Ha Le & Youngho Chang & Donghyun Park, 2016. "Governance, Vulnerability to Climate Change, and Green Growth: International Evidence," ADB Economics Working Paper Series 500, Asian Development Bank.
    2. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    3. W. Adger & P. Kelly, 1999. "Social Vulnerability to Climate Change and the Architecture of Entitlements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 4(3), pages 253-266, September.
    4. Nkulu Rolly Kabange & So-Yeon Park & Dongjin Shin & So-Myeong Lee & Su-Min Jo & Youngho Kwon & Jin-Kyung Cha & You-Chun Song & Jong-Min Ko & Jong-Hee Lee, 2020. "Identification of a Novel QTL for Chlorate Resistance in Rice ( Oryza sativa L.)," Agriculture, MDPI, vol. 10(8), pages 1-16, August.
    5. Holger Daims & Elena V. Lebedeva & Petra Pjevac & Ping Han & Craig Herbold & Mads Albertsen & Nico Jehmlich & Marton Palatinszky & Julia Vierheilig & Alexandr Bulaev & Rasmus H. Kirkegaard & Martin vo, 2015. "Complete nitrification by Nitrospira bacteria," Nature, Nature, vol. 528(7583), pages 504-509, December.
    6. Elizabeth A. Scheehle and Dina Kruger, 2006. "Global Anthropogenic Methane and Nitrous Oxide Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 33-44.
    7. Maartje A. H. J. van Kessel & Daan R. Speth & Mads Albertsen & Per H. Nielsen & Huub J. M. Op den Camp & Boran Kartal & Mike S. M. Jetten & Sebastian Lücker, 2015. "Complete nitrification by a single microorganism," Nature, Nature, vol. 528(7583), pages 555-559, December.
    8. Neil Adger, W., 1999. "Social Vulnerability to Climate Change and Extremes in Coastal Vietnam," World Development, Elsevier, vol. 27(2), pages 249-269, February.
    9. S. Bhuvaneshwari & Hiroshan Hettiarachchi & Jay N. Meegoda, 2019. "Crop Residue Burning in India: Policy Challenges and Potential Solutions," IJERPH, MDPI, vol. 16(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Bartzas & Maria Doula & Konstantinos Komnitsas, 2025. "Life Cycle Assessment of Key Mediterranean Agricultural Products at the Farm Level Using GHG Measurements," Agriculture, MDPI, vol. 15(14), pages 1-18, July.
    2. Yerbakhyt Badyelgajy & Bauyrzhan Aueshanovich Kapsalyamov & Khosbayar Nyamsuren & Nicolae Marinescu, 2025. "Greenhouse Gas Emissions Assessment of the Ecological Footprint from Tourism-Induced Livestock Aggregation in the Altai Tavan Bogd National Park in Mongolia," Sustainability, MDPI, vol. 17(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.
    2. Brian C. Thiede & Abbie Robinson & Clark Gray, 2024. "Climatic Variability and Internal Migration in Asia: Evidence from Big Microdata," Population and Development Review, The Population Council, Inc., vol. 50(2), pages 513-540, June.
    3. Delphine Boutin, 2014. "Climate vulnerability, communities' resilience and child labour," Revue d'économie politique, Dalloz, vol. 124(4), pages 625-638.
    4. Hans-Martin Füssel, 2010. "Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts," World Bank Publications - Reports 9193, The World Bank Group.
    5. H.M. Tuihedur Rahman & Gordon M. Hickey, 2020. "An Analytical Framework for Assessing Context-Specific Rural Livelihood Vulnerability," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    6. Barnett, Jon, 2001. "Adapting to Climate Change in Pacific Island Countries: The Problem of Uncertainty," World Development, Elsevier, vol. 29(6), pages 977-993, June.
    7. Jia Xu & Makoto Takahashi, 2021. "Progressing vulnerability of the immigrants in an urbanizing village in coastal China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8012-8026, May.
    8. Ahmad Taki & Viet Ha Xuan Doan, 2022. "A New Framework for Sustainable Resilient Houses on the Coastal Areas of Khanh Hoa, Vietnam," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    9. Williamson, Tim & Hesseln, Hayley & Johnston, Mark, 2012. "Adaptive capacity deficits and adaptive capacity of economic systems in climate change vulnerability assessment," Forest Policy and Economics, Elsevier, vol. 15(C), pages 160-166.
    10. Arouri, Mohamed & Nguyen, Cuong & Youssef, Adel Ben, 2015. "Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam," World Development, Elsevier, vol. 70(C), pages 59-77.
    11. Hochachka, Gail, 2021. "Integrating the four faces of climate change adaptation: Towards transformative change in Guatemalan coffee communities," World Development, Elsevier, vol. 140(C).
    12. repec:osf:socarx:hxv35_v1 is not listed on IDEAS
    13. Danielle Emma Johnson & Karen Fisher & Meg Parsons, 2022. "Diversifying Indigenous Vulnerability and Adaptation: An Intersectional Reading of Māori Women’s Experiences of Health, Wellbeing, and Climate Change," Sustainability, MDPI, vol. 14(9), pages 1-40, May.
    14. Piya, Luni & Maharjan, Keshav Lall & Joshi, Niraj Prakash, 2012. "Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the Mid-Hills of Nepal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126191, International Association of Agricultural Economists.
    15. Erin C. Pischke & M. Azahara Mesa-Jurado & Amarella Eastmond & Jesse Abrams & Kathleen E. Halvorsen, 2018. "Community perceptions of socioecological stressors and risk-reducing strategies in Tabasco, Mexico," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 8(4), pages 441-451, December.
    16. Kathryn J. Bowen & Sharon Friel & Kristie Ebi & Colin D. Butler & Fiona Miller & Anthony J. McMichael, 2011. "Governing for a Healthy Population: Towards an Understanding of How Decision-Making Will Determine Our Global Health in a Changing Climate," IJERPH, MDPI, vol. 9(1), pages 1-18, December.
    17. Paolo Prosperi & Thomas Allen & Bruce Cogill & Martine Padilla & Iuri Peri, 2016. "Towards metrics of sustainable food systems: a review of the resilience and vulnerability literature," Environment Systems and Decisions, Springer, vol. 36(1), pages 3-19, March.
    18. Donghyun Kim & Jung Eun Kang, 2020. "Building Consensus with Local Residents in Community-Based Adaptation Planning: The Case of Bansong Pilbongoreum Community in Busan, South Korea," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    19. Fahad, Shah & Wang, Jianling, 2018. "Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan," Land Use Policy, Elsevier, vol. 79(C), pages 301-309.
    20. Maren A. Lau, 2006. "Adaptation to Sea-level Rise in the People’s Republic of China – Assessing the Institutional Dimension of Alternative Organisational Frameworks," Working Papers FNU-94, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2006.
    21. Stevens, Mark R. & Senbel, Maged, 2017. "Are municipal land use plans keeping pace with global climate change?," Land Use Policy, Elsevier, vol. 68(C), pages 1-14.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15889-:d:1279155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.