IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14907-d1260538.html
   My bibliography  Save this article

Using System Dynamics to Examine Effects of Satisfaction with PV Systems, Advertising, and Competition on Energy Security and CO 2 Emissions in Jordan

Author

Listed:
  • Abbas Al-Refaie

    (Department of Industrial Engineering, University of Jordan, Amman 11942, Jordan)

  • Natalija Lepkova

    (Department of Construction Management and Real Estate, Vilnius Gediminas Technical University (VILNIUSTECH), LT-10223 Vilnius, Lithuania)

  • Constantinos Hadjistassou

    (Marine & Carbon Lab, Department of Engineering, University of Nicosia, Nicosia 1700, Cyprus)

Abstract

With rapid technology advancements in renewable energy systems, rooftop photovoltaic (PV) products and systems can be considered a crucial element in the transition toward energy sustainability in residential buildings. Still, residents’ initiatives are required to expand the adoption of clean energy-efficient technology to replace conventional energy systems and thereby achieve a sustainable environment. The aim of this study was, therefore, to develop system dynamics models to relate adopters’ satisfaction with PV systems through word-of-mouth (WoM), advertising, and competition and then evaluate their impacts on the number of PV installations, generated electric power, and the reduction in CO 2 emissions for rooftop buildings in Jordan for the years from 2020 to 2040. Results revealed that the predicted cumulative PV installations will increase to 262 and 558 MW in 2030 and 2040, respectively. Due to this, the cumulative generated power (kWh) (=42.5 GWh) will reach 452 and 964 GWh in 2030 and 2040, respectively. Moreover, the cumulative CO 2 emission reductions may reach 262 and 558 million kg CO 2 in 2030 and 2040, respectively. In conclusion, continual assessment of the adopters’ feedback on installed PV systems, adopting effective advertising, and advancement of PV designs and technology can significantly support achieving energy sustainability in residential buildings and reduce the dependency on traditional, scarce energy resources.

Suggested Citation

  • Abbas Al-Refaie & Natalija Lepkova & Constantinos Hadjistassou, 2023. "Using System Dynamics to Examine Effects of Satisfaction with PV Systems, Advertising, and Competition on Energy Security and CO 2 Emissions in Jordan," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14907-:d:1260538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharifi, Mehdi & Khazaei Pool, Javad & Jalilvand, Mohammad Reza & Tabaeeian, Reihaneh Alsadat & Ghanbarpour Jooybari, Mohsen, 2019. "Forecasting of advertising effectiveness for renewable energy technologies: A neural network analysis," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 154-161.
    2. Mihalakakou, G & Psiloglou, B & Santamouris, M & Nomidis, D, 2002. "Application of renewable energy sources in the Greek islands of the South Aegean Sea," Renewable Energy, Elsevier, vol. 26(1), pages 1-19.
    3. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    4. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    5. Sameh Monna & Adel Juaidi & Ramez Abdallah & Mohammed Itma, 2020. "A Comparative Assessment for the Potential Energy Production from PV Installation on Residential Buildings," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    6. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Abbas Al-Refaie & Natalija Lepkova, 2022. "Impacts of Renewable Energy Policies on CO 2 Emissions Reduction and Energy Security Using System Dynamics: The Case of Small-Scale Sector in Jordan," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    8. Pi-Chuan Sun & Hsueh-Mei Wang & Hsien-Long Huang & Chien-Wei Ho, 2020. "Consumer attitude and purchase intention toward rooftop photovoltaic installation: The roles of personal trait, psychological benefit, and government incentives," Energy & Environment, , vol. 31(1), pages 21-39, February.
    9. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    10. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    11. Chen, Kee Kuo, 2014. "Assessing the effects of customer innovativeness, environmental value and ecological lifestyles on residential solar power systems install intention," Energy Policy, Elsevier, vol. 67(C), pages 951-961.
    12. Kim, Heetae & Park, Eunil & Kwon, Sang Jib & Ohm, Jay Y. & Chang, Hyun Joon, 2014. "An integrated adoption model of solar energy technologies in South Korea," Renewable Energy, Elsevier, vol. 66(C), pages 523-531.
    13. Li, Yan & Zhang, Qi & Wang, Ge & McLellan, Benjamin & Liu, Xue Fei & Wang, Le, 2018. "A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 214-223.
    14. Gernaat, David E.H.J. & de Boer, Harmen-Sytze & Dammeier, Louise C. & van Vuuren, Detlef P., 2020. "The role of residential rooftop photovoltaic in long-term energy and climate scenarios," Applied Energy, Elsevier, vol. 279(C).
    15. Njoh, Ambe J. & Etta, Simon & Essia, Uwem & Ngyah-Etchutambe, Ijang & Enomah, Lucy E.D. & Tabrey, Hans T. & Tarke, Mah O., 2019. "Implications of institutional frameworks for renewable energy policy administration: Case study of the Esaghem, Cameroon community PV solar electrification project," Energy Policy, Elsevier, vol. 128(C), pages 17-24.
    16. Aslani, Alireza & Wong, Kau-Fui V., 2014. "Analysis of renewable energy development to power generation in the United States," Renewable Energy, Elsevier, vol. 63(C), pages 153-161.
    17. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    18. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    19. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    20. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    21. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    22. Andrea Reimuth & Veronika Locherer & Martin Danner & Wolfram Mauser, 2020. "How Does the Rate of Photovoltaic Installations and Coupled Batteries Affect Regional Energy Balancing and Self-Consumption of Residential Buildings?," Energies, MDPI, vol. 13(11), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    2. Karytsas, Spyridon & Polyzou, Olympia & Karytsas, Constantine, 2019. "Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water," Renewable Energy, Elsevier, vol. 142(C), pages 591-603.
    3. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    4. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    5. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    6. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    7. Abbas Al-Refaie & Natalija Lepkova, 2022. "Impacts of Renewable Energy Policies on CO 2 Emissions Reduction and Energy Security Using System Dynamics: The Case of Small-Scale Sector in Jordan," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    8. Pi-Chuan Sun & Hsueh-Mei Wang & Hsien-Long Huang & Chien-Wei Ho, 2020. "Consumer attitude and purchase intention toward rooftop photovoltaic installation: The roles of personal trait, psychological benefit, and government incentives," Energy & Environment, , vol. 31(1), pages 21-39, February.
    9. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    10. Sara Ghaboulian Zare & Reza Hafezi & Mohammad Alipour & Reza Parsaei Tabar & Rodney A. Stewart, 2021. "Residential Solar Water Heater Adoption Behaviour: A Review of Economic and Technical Predictors and Their Correlation with the Adoption Decision," Energies, MDPI, vol. 14(20), pages 1-26, October.
    11. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    12. Khan, Imran, 2020. "Impacts of energy decentralization viewed through the lens of the energy cultures framework: Solar home systems in the developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    14. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    15. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    16. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    17. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Personal and psychological factors affecting the successful development of solar energy use in Yemen power sector: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 516-535.
    18. Dasí-Crespo, Daniel & Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2023. "Evaluation of the Spanish regulation on self-consumption photovoltaic installations. A case study based on a rural municipality in Spain," Renewable Energy, Elsevier, vol. 204(C), pages 788-802.
    19. Navratil, J. & Picha, K. & Buchecker, M. & Martinat, S. & Svec, R. & Brezinova, M. & Knotek, J., 2019. "Visitors’ preferences of renewable energy options in “green” hotels," Renewable Energy, Elsevier, vol. 138(C), pages 1065-1077.
    20. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14907-:d:1260538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.