IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13975-d1244147.html
   My bibliography  Save this article

Case Studies on Impacts of Climate Change on Smallholder Livestock Production in Egypt and Spain

Author

Listed:
  • Nesrein M. Hashem

    (Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt)

  • Paula Martinez-Ros

    (Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain)

  • Antonio Gonzalez-Bulnes

    (Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain)

  • Ali Ali El-Raghi

    (Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt)

Abstract

Climate change is one of the hot topics of this decade and seriously affects all economic production sectors including the livestock farming sector. In many scenarios, the Mediterranean region is expected to experience unconventional and severe climate change that necessitates adopting effective strategies to improve the resilience of the livestock farming sector, particularly for smallholders. Here, we performed a cross-sectional survey of 277 smallholder livestock farmers in Egypt and 223 in Spain in order to (1) assess smallholder livestock farmers’ awareness of climate change and its potential impacts on animal performance, (2) identify climate change factors affecting animal productivity, and (3) identify the resilience of small-scale livestock farms in the region to the effects of climate change on animal productivity and existing and future needed adaptive measures. The results showed that just over 90% of respondents were aware of climate change and its potential effects on animal productivity, and just over 60% of smallholders in Spain obtained relevant knowledge through their own direct observation, while most smallholders in Egypt obtained knowledge through communication with other farmers and from the media. The role of extension advisors has diminished in the two countries, recording 0.36% in Egypt and 1.35% in Spain. The survey responses suggest that heat waves, humidity, and drought are the major climatic changes affecting smallholding animal production, representing 68.65, 16.34, and 15.01%, respectively. Climatic change appears to have affected primarily milk yield, wool production, and reproductive performance on the smallholding farms in our survey, while affecting meat production, mortality rate, and egg production to a smaller extent. As measures to buffer the effects of climate change, 25% of respondents in Egypt indicated that they have adopted nutritional strategies, 36% indicated that they manage housing conditions, and 6% indicated that they use genetically improved animal breeds. The corresponding percentages among respondents in Spain were 15%, 28%, and 4%, respectively. In conclusion, awareness about climate change as well as adaptation measures are the major axes to sustaining the growing demand for livestock products. Furthermore, mitigation strategies are keys to limiting the upcoming extent of climate change, and there are several adaptation strategies.

Suggested Citation

  • Nesrein M. Hashem & Paula Martinez-Ros & Antonio Gonzalez-Bulnes & Ali Ali El-Raghi, 2023. "Case Studies on Impacts of Climate Change on Smallholder Livestock Production in Egypt and Spain," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13975-:d:1244147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H J Van der Fels-Klerx & L C Vermeulen & A K Gavai & C Liu, 2019. "Climate change impacts on aflatoxin B1 in maize and aflatoxin M1 in milk: A case study of maize grown in Eastern Europe and imported to the Netherlands," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
    2. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    3. Thornton, P.K. & van de Steeg, J. & Notenbaert, A. & Herrero, M., 2009. "The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know," Agricultural Systems, Elsevier, vol. 101(3), pages 113-127, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Melissa Rojas-Downing & A. Pouyan Nejadhashemi & Mohammad Abouali & Fariborz Daneshvar & Sabah Anwer Dawood Al Masraf & Matthew R. Herman & Timothy Harrigan & Zhen Zhang, 2018. "Pasture diversification to combat climate change impacts on grazing dairy production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 405-431, March.
    2. Lenyeletse V. Basupi & Claire H. Quinn & Andrew J. Dougill, 2017. "Pastoralism and Land Tenure Transformation in Sub-Saharan Africa: Conflicting Policies and Priorities in Ngamiland, Botswana," Land, MDPI, vol. 6(4), pages 1-17, December.
    3. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    4. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    5. Naveen P. Singh & Bhawna Anand & S. K. Srivastava & N. R. Kumar & Shirish Sharma & S. K. Bal & K. V. Rao & M. Prabhakar, 2022. "Risk, perception and adaptation to climate change: evidence from arid region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1015-1037, June.
    6. Sèyi Fridaïus Ulrich Vanvanhossou & Luc Hippolyte Dossa & Sven König, 2021. "Sustainable Management of Animal Genetic Resources to Improve Low-Input Livestock Production: Insights into Local Beninese Cattle Populations," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    7. Jean-François Maystadt & Margherita Calderone & Liangzhi You, 2015. "Local warming and violent conflict in North and South Sudan," Journal of Economic Geography, Oxford University Press, vol. 15(3), pages 649-671.
    8. William R. Sutton & Jitendra P. Srivastava & James E. Neumann & Peter Droogers & Brent B. Boehlert, 2013. "Reducing the Vulnerability of Uzbekistan's Agricultural Systems to Climate Change : Impact Assessment and Adaptation Options," World Bank Publications - Books, The World Bank Group, number 16200, December.
    9. Pengfei Liu & Lingling Hou & Dongqing Li & Shi Min & Yueying Mu, 2021. "Determinants of Livestock Insurance Demand: Experimental Evidence from Chinese Herders," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(2), pages 430-451, June.
    10. Lenis Saweda O. Liverpool-Tasie & Awa Sanou & Justice A. Tambo, 2019. "Climate change adaptation among poultry farmers: evidence from Nigeria," Climatic Change, Springer, vol. 157(3), pages 527-544, December.
    11. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    12. Prabhat Khanal & Rajan Dhakal & Tanka Khanal & Deepak Pandey & Naba Raj Devkota & Mette Olaf Nielsen, 2022. "Sustainable Livestock Production in Nepal: A Focus on Animal Nutrition Strategies," Agriculture, MDPI, vol. 12(5), pages 1-20, May.
    13. Naeem Akram & Abdul Hamid, 2015. "Climate change: A threat to the economic growth of Pakistan," Progress in Development Studies, , vol. 15(1), pages 73-86, January.
    14. Leonhard Klinck & Kingsley K. Ayisi & Johannes Isselstein, 2022. "Drought-Induced Challenges and Different Responses by Smallholder and Semicommercial Livestock Farmers in Semiarid Limpopo, South Africa—An Indicator-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    15. Megersa, Bekele & Markemann, André & Angassa, Ayana & Ogutu, Joseph O. & Piepho, Hans-Peter & Valle Zaráte, Anne, 2014. "Impacts of climate change and variability on cattle production in southern Ethiopia: Perceptions and empirical evidence," Agricultural Systems, Elsevier, vol. 130(C), pages 23-34.
    16. Cheng, Muxi & McCarl, Bruce A. & Fei, Chengcheng, 2022. "Impact of Climate Change on the U.S. Livestock Sector," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322255, Agricultural and Applied Economics Association.
    17. Assem Abu Hatab & Maria Eduarda Rigo Cavinato & Carl Johan Lagerkvist, 2019. "Urbanization, livestock systems and food security in developing countries: A systematic review of the literature," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(2), pages 279-299, April.
    18. Muhammad Irshad Ahmad & Hengyun Ma, 2020. "Climate Change and Livelihood Vulnerability in Mixed Crop–Livestock Areas: The Case of Province Punjab, Pakistan," Sustainability, MDPI, vol. 12(2), pages 1-31, January.
    19. Augustine Ayantunde & Rainer Asse & Mohammed Said & Abdou Fall, 2014. "Transhumant pastoralism, sustainable management of natural resources and endemic ruminant livestock in the sub-humid zone of West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(5), pages 1097-1117, October.
    20. Rigolot, C. & de Voil, P. & Douxchamps, S. & Prestwidge, D. & Van Wijk, M. & Thornton, P.K. & Rodriguez, D. & Henderson, B. & Medina, D. & Herrero, M., 2017. "Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso," Agricultural Systems, Elsevier, vol. 151(C), pages 217-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13975-:d:1244147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.