IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13741-d1240080.html
   My bibliography  Save this article

Risk Assessment for Energy Stations Based on Real-Time Equipment Failure Rates and Security Boundaries

Author

Listed:
  • Yongheng Luo

    (The School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Zhonglong Li

    (The School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Sen Li

    (The School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Fei Jiang

    (The School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

Abstract

In the context of China’s 2020 dual carbon goals of peak CO 2 emissions by 2030 and carbon neutrality by 2060, the security of multi-energy systems is increasingly challenged as clean energy continues to be supplied to the system. This paper proposes a risk assessment and enhancement strategy for distributed energy stations (DESs) based on a security boundary. First, based on the coupling relationship between different energy sources and combining the mutual support relationships between different pieces of equipment, a security boundary for DESs was constructed. Second, based on the characteristics of different sources of equipment failure, the real-time failure probabilities of equipment and pipelines were calculated in order to obtain the security risks of DES operation states based on the security boundary. Finally, for equipment and pipelines at high risk, an economic security enhancement strategy is proposed, and the Pareto solution set is solved using a multi-objective algorithm. The analysis shows that the proposed method can effectively quantify the security risks of energy systems in real time, and the proposed enhancement strategy takes into account both economics and system security.

Suggested Citation

  • Yongheng Luo & Zhonglong Li & Sen Li & Fei Jiang, 2023. "Risk Assessment for Energy Stations Based on Real-Time Equipment Failure Rates and Security Boundaries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13741-:d:1240080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    2. Zhang, Shenxi & Cheng, Haozhong & Li, Ke & Tai, Nengling & Wang, Dan & Li, Furong, 2018. "Multi-objective distributed generation planning in distribution network considering correlations among uncertainties," Applied Energy, Elsevier, vol. 226(C), pages 743-755.
    3. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    4. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    5. Wang, Can & Yan, Chao & Li, Gengfeng & Liu, Shiyu & Bie, Zhaohong, 2020. "Risk assessment of integrated electricity and heat system with independent energy operators based on Stackelberg game," Energy, Elsevier, vol. 198(C).
    6. Xiao, Jun & Lin, Xiqiao & Jiao, Heng & Song, Chenhui & Zhou, Huan & Zu, Guoqiang & Zhou, Chunli & Wang, Dan, 2023. "Model, calculation, and application of available supply capability for distribution systems," Applied Energy, Elsevier, vol. 348(C).
    7. Marek Urbanik & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2019. "Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures," Energies, MDPI, vol. 12(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodriguez-Matas, Antonio F. & Ruiz, Carlos & Linares, Pedro & Perez-Bravo, Manuel, 2025. "How energy strategies are shaped by the correlation of uncertainties," Applied Energy, Elsevier, vol. 382(C).
    2. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    3. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue & Liu, Yun, 2023. "Risk assessment for cascading failures in regional integrated energy system considering the pipeline dynamics," Energy, Elsevier, vol. 270(C).
    4. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    6. Yan Ma & Yumin Chen & Zhengwei Chang & Qian Li & Hongli Liu & Yang Wei, 2023. "Power Side Risk Assessment of Multi-Energy Microgrids Considering Risk Propagation between Interconnected Energy Networks," Energies, MDPI, vol. 16(22), pages 1-13, November.
    7. Zhang, Lingzhi & Shi, Ruifeng & Ning, Jin & Jia, Limin & Lee, Kwang Y., 2025. "RAMS assessment methodology for road transport self-contained energy systems considering source-load dual uncertainty," Renewable Energy, Elsevier, vol. 239(C).
    8. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    9. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    10. Sakthivelnathan Nallainathan & Ali Arefi & Christopher Lund & Ali Mehrizi-Sani, 2025. "Microgrid Reliability Incorporating Uncertainty in Weather and Equipment Failure," Energies, MDPI, vol. 18(8), pages 1-23, April.
    11. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    12. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    13. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    14. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Mohamed Eid, 2021. "Functional Safety Concept to Support Hazard Assessment and Risk Management in Water-Supply Systems," Energies, MDPI, vol. 14(4), pages 1-13, February.
    15. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    16. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    17. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    18. Xiao, Jun & Li, Chengjin & She, Buxin & Jiao, Heng & Wang, Chuanqi & Zhang, Shihao, 2024. "Distribution system security region with energy storage systems," Energy, Elsevier, vol. 313(C).
    19. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    20. Jiao, P.H. & Chen, J.J. & Cai, X. & Zhao, Y.L., 2024. "Fuzzy semi-entropy based downside risk to low-carbon oriented multi-energy dispatch considering multiple dependent uncertainties," Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13741-:d:1240080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.