IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036193.html
   My bibliography  Save this article

Distribution system security region with energy storage systems

Author

Listed:
  • Xiao, Jun
  • Li, Chengjin
  • She, Buxin
  • Jiao, Heng
  • Wang, Chuanqi
  • Zhang, Shihao

Abstract

The high penetration of distributed energy resources (DERs) in distribution systems calls for advanced security management techniques. Hence, this paper proposes the model of the distribution system security region with energy storage systems (DSSR-ESS). The N-1 secure operation range of distribution systems integrating ESS is characterized. Further research reveals the effect and mechanism of ESS on the DSSR properties. Firstly, the ESS in distribution systems is clarified from the perspective of security, and the security service time and real-time security service capability are defined. Secondly, the DSSR-ESS model is formulated by: 1) selecting load and distributed generation (DG) as the state variables, 2) identifying the normal operation security and N-1 security scenarios, and 3) determining the complete security constraints. Then, to solve the time-varying and nonlinear N-1 DSSR-ESS model, an algorithm is developed. The analytical expressions of the region boundaries considering voltage constraints, line loss, and ESS SOC are further obtained. Finally, a modified IEEE-RBTS-BUS4 system and its expanded 104-node test system are used to verify the proposed model. Comparing with the existing research, the proposed DSSR-ESS model considers ESS. This paper concludes that ESS bidirectionally adjusts the power flow of its upstream branches, thereby expanding the security region both in positive and negative directions. But limited by state space boundaries and security boundaries unaffected by ESS, increasing ESS capacity may not lead to DSSR-ESS expansion. Based on this discovery, a sitting strategy for ESS is developed to expand the security region, which demonstrates the practical application of DSSR-ESS in the security management of distribution systems.

Suggested Citation

  • Xiao, Jun & Li, Chengjin & She, Buxin & Jiao, Heng & Wang, Chuanqi & Zhang, Shihao, 2024. "Distribution system security region with energy storage systems," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036193
    DOI: 10.1016/j.energy.2024.133841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    3. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
    4. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    5. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    6. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    7. Xiao, Jun & Zu, Guoqiang & Wang, Ying & Zhang, Xinsong & Jiang, Xun, 2020. "Model and observation of dispatchable region for flexible distribution network," Applied Energy, Elsevier, vol. 261(C).
    8. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    9. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    10. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    11. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    12. Santos, Sérgio F. & Fitiwi, Desta Z. & Cruz, Marco R.M. & Cabrita, Carlos M.P. & Catalão, João P.S., 2017. "Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems," Applied Energy, Elsevier, vol. 185(P1), pages 44-55.
    13. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    14. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    15. Li, Yang & Feng, Bo & Li, Guoqing & Qi, Junjian & Zhao, Dongbo & Mu, Yunfei, 2018. "Optimal distributed generation planning in active distribution networks considering integration of energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1073-1081.
    16. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    17. Zakernezhad, Hamid & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal scheduling of an active distribution system considering distributed energy resources, demand response aggregators and electrical energy storage," Applied Energy, Elsevier, vol. 314(C).
    18. Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Jun & Li, Chengjin & He, Guowei & Lv, Zihan & Sun, Gang & Zhou, Yupeng & Liang, Haishen, 2025. "Flexible resource security regulating capability for distribution systems: Concept, method, and applications," Applied Energy, Elsevier, vol. 382(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    2. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    3. Li, Jinghua & Lu, Bo & Wang, Zhibang & Zhu, Mengshu, 2021. "Bi-level optimal planning model for energy storage systems in a virtual power plant," Renewable Energy, Elsevier, vol. 165(P2), pages 77-95.
    4. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Xiao, Jun & Sun, Gang & Song, Chenhui & Wang, Dan & Lin, Xiqiao, 2025. "Security monitoring, early warning and alarm Method based on security boundary for regional integrated energy system," Applied Energy, Elsevier, vol. 379(C).
    6. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    7. Zhou, Yulu & Zhang, Jingrui, 2020. "Three-layer day-ahead scheduling for active distribution network by considering multiple stakeholders," Energy, Elsevier, vol. 207(C).
    8. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).
    9. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    10. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    11. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    12. Zhixian Wang & Ying Wang & Qia Ding & Chen Wang & Kaifeng Zhang, 2020. "Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    13. Dong, Hongxin & Han, Zhongyang & Zhao, Jun & Wang, Wei, 2024. "A dynamic security region construction method and its existence proof for gaseous system," Applied Energy, Elsevier, vol. 367(C).
    14. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    15. Tianyi Guan & Zhuang Ma & Hao Ren & Qingshuai Yu & Rongxing Zhang & Zhenao Sun, 2025. "Research on Safety Domain Modeling of Low-Voltage Distribution Substations Based on High-Dimensional Safety Region Analysis," Energies, MDPI, vol. 18(5), pages 1-20, February.
    16. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    17. Jiang, Xun & Zhou, Yue & Ming, Wenlong & Wu, Jianzhong, 2023. "Feasible operation region of an electricity distribution network," Applied Energy, Elsevier, vol. 331(C).
    18. Meng, He & Jia, Hongjie & Xu, Tao & Wei, Wei & Wu, Yuhan & Liang, Lemeng & Cai, Shuqi & Liu, Zuozheng & Wang, Rujing & Li, Mengchao, 2022. "Optimal configuration of cooperative stationary and mobile energy storage considering ambient temperature: A case for Winter Olympic Game," Applied Energy, Elsevier, vol. 325(C).
    19. Saman Nikkhah & Arman Alahyari & Adib Allahham & Khaled Alawasa, 2023. "Optimal Integration of Hybrid Energy Systems: A Security-Constrained Network Topology Reconfiguration," Energies, MDPI, vol. 16(6), pages 1-19, March.
    20. Masoud Shirazi & José Alberto Fuinhas & Nuno Silva, 2023. "Sustainable economic development and geopolitics: The role of energy trilemma policies," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(4), pages 2471-2491, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.