IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v283y2021ics0306261920315415.html
   My bibliography  Save this article

Integrated energy system security region: Concepts, methods, and implementations

Author

Listed:
  • Jiang, Tao
  • Zhang, Rufeng
  • Li, Xue
  • Chen, Houhe
  • Li, Guoqing

Abstract

The interconnection and coupling of integrated energy systems (IES) including electricity system, natural gas system and district heating system become increasingly tight. It brings opportunities for improving energy consumption efficiency as well as challenges on security interactions. Thus, the concepts of the IES security region (SR), which considers all the essential operational constraints of IES (including voltage magnitude constraint, thermal constraint, gas pressure constraint, gas transmission constraint, and temperature constraint), are discussed in this paper. These concepts stem from the ideas of power system security regions and are expanded to the multi-dimensional IES involving the limits and parameters of electricity, natural gas, and district heating networks. A set of optimization models are developed to explore the SR boundaries (SRBs) in the IES. Also, a piecewise approximation is proposed to represent the SRB of IES in a multi-dimensional space with a minimum set of hyperplanes. After that, the potential implementations of SR for security assessment and optimal control in the IES are presented and analyzed. Numerical results from the IES 30-20-2×6 system demonstrates the feasibility and effectiveness of the proposed method and verifies that it can significantly enhance the situation awareness ability of the IES.

Suggested Citation

  • Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920315415
    DOI: 10.1016/j.apenergy.2020.116124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    2. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    3. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    4. Liu, Shuo & Yang, Zhifang & Xia, Qing & Lin, Wei & Shi, Lianjun & Zeng, Dan, 2020. "Power trading region considering long-term contract for interconnected power networks," Applied Energy, Elsevier, vol. 261(C).
    5. Chertkov, Michael & Backhaus, Scott & Lebedev, Vladimir, 2015. "Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling," Applied Energy, Elsevier, vol. 160(C), pages 541-551.
    6. Xiao, Jun & Zu, Guoqiang & Wang, Ying & Zhang, Xinsong & Jiang, Xun, 2020. "Model and observation of dispatchable region for flexible distribution network," Applied Energy, Elsevier, vol. 261(C).
    7. Yang, Jingwei & Zhang, Ning & Botterud, Audun & Kang, Chongqing, 2020. "Situation awareness of electricity-gas coupled systems with a multi-port equivalent gas network model," Applied Energy, Elsevier, vol. 258(C).
    8. Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick, 2013. "A sequential Monte Carlo model of the combined GB gas and electricity network," Energy Policy, Elsevier, vol. 62(C), pages 473-483.
    9. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    10. Lin, Wei & Yang, Zhifang & Yu, Juan & Yang, Gaofeng & Wen, Lili, 2019. "Determination of Transfer Capacity Region of Tie Lines in Electricity Markets: Theory and Analysis," Applied Energy, Elsevier, vol. 239(C), pages 1441-1458.
    11. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Tao & Li, Xue & Kou, Xiao & Zhang, Rufeng & Tian, Guoda & Li, Fangxing, 2022. "Available transfer capability evaluation in electricity-dominated integrated hybrid energy systems with uncertain wind power: An interval optimization solution," Applied Energy, Elsevier, vol. 314(C).
    2. Shirazi, Masoud, 2022. "Assessing energy trilemma-related policies: The world's large energy user evidence," Energy Policy, Elsevier, vol. 167(C).
    3. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    4. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    5. Jiang, Xun & Zhou, Yue & Ming, Wenlong & Wu, Jianzhong, 2023. "Feasible operation region of an electricity distribution network," Applied Energy, Elsevier, vol. 331(C).
    6. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).
    7. Jiao, Heng & Lin, Xiqiao & Xiao, Jun & Zu, Guoqiang & Song, Chenhui & Qiu, Zekai & Bao, Zhenyu & Zhou, Chunli, 2023. "Concavity-convexity of distribution system security region. Part I: Observation results and mechanism," Applied Energy, Elsevier, vol. 342(C).
    8. Lang Zhao & Yuan Zeng & Zhidong Wang & Yizheng Li & Dong Peng & Yao Wang & Xueying Wang, 2023. "Robust Optimal Scheduling of Integrated Energy Systems Considering the Uncertainty of Power Supply and Load in the Power Market," Energies, MDPI, vol. 16(14), pages 1-14, July.
    9. Xiao, Jun & Qu, Yuqing & She, Buxin & Song, Chenhui, 2023. "Operational boundary of flow network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Lili Mo & Zeyu Deng & Haoyong Chen & Junkun Lan, 2023. "Multi-Objective Co-Operative Game-Based Optimization for Park-Level Integrated Energy System Based on Exergy-Economic Analysis," Energies, MDPI, vol. 16(24), pages 1-19, December.
    11. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    3. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    4. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    5. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    6. Jiang, Yunpeng & Ren, Zhouyang & Yang, Xin & Li, Qiuyan & Xu, Yan, 2022. "A steady-state energy flow analysis method for integrated natural gas and power systems based on topology decoupling," Applied Energy, Elsevier, vol. 306(PA).
    7. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    8. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Pan, Xueping, 2021. "Best response-based individually look-ahead scheduling for natural gas and power systems," Applied Energy, Elsevier, vol. 304(C).
    9. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    10. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    12. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    13. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    14. Guoqiang Sun & Wenxue Wang & Yi Wu & Wei Hu & Zijun Yang & Zhinong Wei & Haixiang Zang & Sheng Chen, 2019. "A Nonlinear Analytical Algorithm for Predicting the Probabilistic Mass Flow of a Radial District Heating Network," Energies, MDPI, vol. 12(7), pages 1-20, March.
    15. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    16. Jing Liu & Wei Sun & Jinghao Yan, 2021. "Effect of P2G on Flexibility in Integrated Power-Natural Gas-Heating Energy Systems with Gas Storage," Energies, MDPI, vol. 14(1), pages 1-15, January.
    17. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    18. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    19. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    20. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920315415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.