IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220323902.html
   My bibliography  Save this article

Security region of natural gas pipeline network system: Concept, method and application

Author

Listed:
  • Song, Chenhui
  • Xiao, Jun
  • Zu, Guoqiang
  • Hao, Ziyuan
  • Zhang, Xinsong

Abstract

This paper proposes the security region of natural gas pipeline network system (NGS-SR), which provides a new perspective to analyze the security of the system. Firstly, the definition of NGS-SR is proposed, that is, the closed set of all secure operating points in the state space. NGS-SR is then modeled considering variety of operation constraints, such as the hydraulic balance constraint, the node gas pressure constraint, etc. Secondly, an observation-based method is proposed to solve the security boundary of NGS-SR. Thirdly, the approaches of security assessment and preventive control based on NGS-SR are illustrated. Finally, the NGS-SR of two typical systems are observed, analyzed and compared with the existing methods of security analysis. The results show the validity and precision of the proposed model and method, as well as the advantages of NGS-SR: 1) NGS-SR can describe the secure operating range of the system in a geometric and visualized way; 2) NGS-SR is beneficial to realize online security analysis, the analysis speed is increased up to 1944 times in the cases; 3) NGS-SR can provide the security margin information for system operation.

Suggested Citation

  • Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220323902
    DOI: 10.1016/j.energy.2020.119283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220323902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Wei & Yang, Zhifang & Yu, Juan & Zhao, Ke & Wen, Shiyang & Lin, Wei & Li, Wenyuan, 2019. "Security region of renewable energy integration: Characterization and flexibility," Energy, Elsevier, vol. 187(C).
    2. Dokic, Svjetlana B. & Rajakovic, Nikola Lj., 2019. "Security modelling of integrated gas and electrical power systems by analyzing critical situations and potentials for performance optimization," Energy, Elsevier, vol. 184(C), pages 141-150.
    3. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).
    4. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    5. Jun Xiao & Guo-qiang Zu & Xiao-xu Gong & Cheng-shan Wang, 2014. "Model and Topological Characteristics of Power Distribution System Security Region," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-13, July.
    6. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Voropai, N.I. & Senderov, S.M. & Edelev, A.V., 2012. "Detection of “bottlenecks” and ways to overcome emergency situations in gas transportation networks on the example of the European gas pipeline network," Energy, Elsevier, vol. 42(1), pages 3-9.
    8. Saldarriaga-C., Carlos A. & Salazar, Harold, 2016. "Security of the Colombian energy supply: The need for liquefied natural gas regasification terminals for power and natural gas sectors," Energy, Elsevier, vol. 100(C), pages 349-362.
    9. Hiller, Benjamin & Koch, Thorsten & Schewe, Lars & Schwarz, Robert & Schweiger, Jonas, 2018. "A system to evaluate gas network capacities: Concepts and implementation," European Journal of Operational Research, Elsevier, vol. 270(3), pages 797-808.
    10. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    11. Sukharev, M.G. & Kulik, V.S., 2019. "The impact of information uncertainty on the problems of medium- and long-term planning of the operation modes of gas transport systems," Energy, Elsevier, vol. 184(C), pages 123-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).
    2. Jiao, Heng & Lin, Xiqiao & Xiao, Jun & Zu, Guoqiang & Song, Chenhui & Qiu, Zekai & Bao, Zhenyu & Zhou, Chunli, 2023. "Concavity-convexity of distribution system security region. Part I: Observation results and mechanism," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Brian Sergi & Kwabena Pambour, 2022. "An Evaluation of Co-Simulation for Modeling Coupled Natural Gas and Electricity Networks," Energies, MDPI, vol. 15(14), pages 1-18, July.
    3. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    4. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Chen, Binbin, 2021. "Generalized phasor modeling of dynamic gas flow for integrated electricity-gas dispatch," Applied Energy, Elsevier, vol. 283(C).
    5. Zhang, Tong & Li, Zhigang & Wu, Qiuwei & Pan, Shixian & Wu, Q.H., 2022. "Dynamic energy flow analysis of integrated gas and electricity systems using the holomorphic embedding method," Applied Energy, Elsevier, vol. 309(C).
    6. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    7. Olivier Massol, 2011. "A Cost Function for the Natural Gas Transmission Industry: Further Considerations," The Engineering Economist, Taylor & Francis Journals, vol. 56(2), pages 95-122.
    8. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    10. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    11. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    12. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    13. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    14. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    15. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    16. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    17. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    18. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    19. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    20. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220323902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.