IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924020920.html
   My bibliography  Save this article

Security monitoring, early warning and alarm Method based on security boundary for regional integrated energy system

Author

Listed:
  • Xiao, Jun
  • Sun, Gang
  • Song, Chenhui
  • Wang, Dan
  • Lin, Xiqiao

Abstract

Effective security early warning and alarm technology can provide comprehensive information such as the security levels, violation components, and the security trend of the system before a fault occurs. The core early warning and alarm information provided by existing methods is insufficient. To fill these gaps, this paper proposes an early warning and alarm method to monitor the security state of regional integrated energy system (RIES). Firstly, the security boundary and fuzzy theory are introduced. Secondly, the assessment methods of geometric security distance, overload and node parameter violation are further given, respectively. Thirdly, a two-stage early warning and alarm method is proposed, which can analyze the system operating state and determine the security level. The first stage can preliminarily classify the operating state of RIES through AC security boundary, including normal state, alert state and emergency state, and then send out signals correspondingly. The second stage can calculate the final security levels based on fuzzy inference and fuzzy comprehensive evaluation. For interconnected RIES, the security levels include I, IIa ~ IId and IIIa ~ IIId. For radial RIES, the security levels include I and IIIa ~ IIId. Fourthly, the comprehensive and detailed early warning and alarm information is given. The overload components and N − 1 components are located by DC security boundary analysis; the violation degree and parameters violation locations are further given based on energy flow calculation; the security trend is also predicted by the average value of the geometric security distance of the time series operating points. Finally, the correctness and effectiveness of proposed method are tested on typical cases. The results show that there are indeed five security levels: III, IIc, Ia, Ic and Id, the violation components and corresponding violation degrees can be obtained accurately, and the downward trend of N-0 and N − 1 security for RIES can be predicted further. Compared with existing methods, this paper provides more complete early warning and alarm information such as detailed security levels, violation components, violation degree and security trend. The time complexity of online early warning and alarm is only O(rt), and the online computational time is reduced by 2 orders of magnitude compared with the existing method. The detailed information provided by the proposed mothed can help RIES dispatchers assess security levels and make decisions timely.

Suggested Citation

  • Xiao, Jun & Sun, Gang & Song, Chenhui & Wang, Dan & Lin, Xiqiao, 2025. "Security monitoring, early warning and alarm Method based on security boundary for regional integrated energy system," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924020920
    DOI: 10.1016/j.apenergy.2024.124709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
    2. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    3. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    4. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Jun & Li, Chengjin & She, Buxin & Jiao, Heng & Wang, Chuanqi & Zhang, Shihao, 2024. "Distribution system security region with energy storage systems," Energy, Elsevier, vol. 313(C).
    2. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).
    3. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    4. Dong, Hongxin & Han, Zhongyang & Zhao, Jun & Wang, Wei, 2024. "A dynamic security region construction method and its existence proof for gaseous system," Applied Energy, Elsevier, vol. 367(C).
    5. Tianyi Guan & Zhuang Ma & Hao Ren & Qingshuai Yu & Rongxing Zhang & Zhenao Sun, 2025. "Research on Safety Domain Modeling of Low-Voltage Distribution Substations Based on High-Dimensional Safety Region Analysis," Energies, MDPI, vol. 18(5), pages 1-20, February.
    6. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    7. Masoud Shirazi & José Alberto Fuinhas & Nuno Silva, 2023. "Sustainable economic development and geopolitics: The role of energy trilemma policies," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(4), pages 2471-2491, August.
    8. Shirazi, Masoud, 2022. "Assessing energy trilemma-related policies: The world's large energy user evidence," Energy Policy, Elsevier, vol. 167(C).
    9. Jiao, Heng & Lin, Xiqiao & Xiao, Jun & Zu, Guoqiang & Song, Chenhui & Qiu, Zekai & Bao, Zhenyu & Zhou, Chunli, 2023. "Concavity-convexity of distribution system security region. Part I: Observation results and mechanism," Applied Energy, Elsevier, vol. 342(C).
    10. Lin, Yujun & Yang, Qiufan & Zhou, Jianyu & Chen, Xia & Wen, Jinyu, 2023. "A time-coupling consideration for evaluation of load carrying capacity in district multi-energy systems," Applied Energy, Elsevier, vol. 351(C).
    11. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    12. Gao, Han & Zhao, Peiyao & Li, Zhengshuo, 2024. "Dynamic security region of natural gas systems in integrated electricity-gas systems," Energy, Elsevier, vol. 289(C).
    13. Yan, Yamin & Yan, Jie & Liu, Shan & Wang, Yumeng & Wang, Bohong & Han, Shuang & Yongqian, Liu, 2024. "Review and prospect on the construction method of security region for integrated natural gas and power systems," Energy, Elsevier, vol. 307(C).
    14. Zhong, Xiaoqing & Zhong, Weifeng & Lin, Zhenjia & Zhou, Guoxu & Lai, Loi Lei & Xie, Shengli & Yan, Jinyue, 2024. "Localized electricity and carbon allowance management for interconnected discrete manufacturing systems considering algorithmic and physical feasibility," Applied Energy, Elsevier, vol. 372(C).
    15. Xie, Xuehua & Qian, Tong & Li, Weiwei & Tang, Wenhu & Xu, Zhao, 2024. "An individualized adaptive distributed approach for fast energy-carbon coordination in transactive multi-community integrated energy systems considering power transformer loading capacity," Applied Energy, Elsevier, vol. 375(C).
    16. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Zhao, Wei & Liao, Qi & Qiu, Rui & Liu, Chunying & Xu, Ning & Yu, Xiao & Liang, Yongtu, 2024. "Pipe sharing: A bilevel optimization model for the optimal capacity allocation of natural gas network," Applied Energy, Elsevier, vol. 359(C).
    18. Xiao, Jun & Lin, Xiqiao & Jiao, Heng & Song, Chenhui & Zhou, Huan & Zu, Guoqiang & Zhou, Chunli & Wang, Dan, 2023. "Model, calculation, and application of available supply capability for distribution systems," Applied Energy, Elsevier, vol. 348(C).
    19. Jun Zhang & Jiangquan Wang & Linling Zhang & Lei Zhao, 2022. "Impact of industrialization on China’s regional energy security in the New Era," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8418-8440, June.
    20. Jiang, Xun & Zhou, Yue & Ming, Wenlong & Wu, Jianzhong, 2023. "Feasible operation region of an electricity distribution network," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924020920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.