IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921010977.html
   My bibliography  Save this article

Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach

Author

Listed:
  • Lee, Sangyoon
  • Choi, Dae-Hyun

Abstract

Profit maximization of electric vehicle charging station (EVCS) operation yields an increasing investment for the deployment of EVCSs, thereby increasing the penetration of electric vehicles (EVs) and supporting high-quality charging service to EV users. However, existing model-based approaches for profit maximization of EVCSs may exhibit poor performance owing to the underutilization of massive data and inaccurate modeling of EVCS operation in a dynamic environment. Furthermore, the existing approaches can be vulnerable to adversaries that abuse private EVCS operation data for malicious purposes. To resolve these limitations, we propose a privacy-preserving distributed deep reinforcement learning (DRL) framework that maximizes the profits of multiple smart EVCSs integrated with photovoltaic and energy storage systems under a dynamic pricing strategy. In the proposed framework, DRL agents using the soft actor–critic method determine the schedules of the profitable selling price and charging/discharging energy for EVCSs. To preserve the privacy of EVCS operation data, a federated reinforcement learning method is adopted in which only the local and global neural network models of the DRL agents are exchanged between the DRL agents at the EVCSs and the global agent at the central server without sharing EVCS data. Numerical examples demonstrate the effectiveness of the proposed approach in terms of convergence of the training curve for the DRL agent, adaptive profitable selling price, energy charging and discharging, sensitivity of the selling price factor, and varying weather conditions.

Suggested Citation

  • Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010977
    DOI: 10.1016/j.apenergy.2021.117754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    2. Chao Luo & Yih-Fang Huang & Vijay Gupta, 2018. "Stochastic Dynamic Pricing for EV Charging Stations with Renewables Integration and Energy Storage," Papers 1801.02128, arXiv.org.
    3. Graber, Giuseppe & Calderaro, Vito & Mancarella, Pierluigi & Galdi, Vincenzo, 2020. "Two-stage stochastic sizing and packetized energy scheduling of BEV charging stations with quality of service constraints," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    2. Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    3. Zhang, Shulei & Jia, Runda & Pan, Hengxin & Cao, Yankai, 2023. "A safe reinforcement learning-based charging strategy for electric vehicles in residential microgrid," Applied Energy, Elsevier, vol. 348(C).
    4. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Feng, Bin & Liu, Zhuping & Huang, Gang & Guo, Chuangxin, 2023. "Robust federated deep reinforcement learning for optimal control in multiple virtual power plants with electric vehicles," Applied Energy, Elsevier, vol. 349(C).
    6. Truong, Van Binh & Le, Long Bao, 2024. "Electric vehicle charging design: The factored action based reinforcement learning approach," Applied Energy, Elsevier, vol. 359(C).
    7. Monica Alonso & Hortensia Amaris & David Martin & Arturo de la Escalera, 2023. "Proximal Policy Optimization for Energy Management of Electric Vehicles and PV Storage Units," Energies, MDPI, vol. 16(15), pages 1-20, July.
    8. Md Sahabul Hossain & Craig Rodine & Eirini Eleni Tsiropoulou, 2024. "A Blockchain and PKI-Based Secure Vehicle-to-Vehicle Energy-Trading Protocol," Energies, MDPI, vol. 17(17), pages 1-52, August.
    9. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    11. Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
    12. Chuming Pang & Yongkui Shi & Yang Liu, 2023. "Research on Sustainable Development of Mining Goaf Management Based on Economic Models," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    13. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    2. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    3. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    4. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    5. Cui, Jingshi & Wu, Jiaman & Wu, Chenye & Moura, Scott, 2023. "Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies," Applied Energy, Elsevier, vol. 352(C).
    6. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    7. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    8. Fayez Alanazi & Talal Obaid Alshammari & Abdelhalim Azam, 2023. "Optimal Charging Station Placement and Scheduling for Electric Vehicles in Smart Cities," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    9. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    10. VJ Vijayalakshmi & A Amudha & K Dhayalini & A Prakash, 2024. "A hybrid WFS-CGO based approach for optimal allocation of EV charging spots along with capacitors in smart distribution network for congestion management," Energy & Environment, , vol. 35(4), pages 1673-1702, June.
    11. Lin, Haiyang & Bian, Caiyun & Wang, Yu & Li, Hailong & Sun, Qie & Wallin, Fredrik, 2022. "Optimal planning of intra-city public charging stations," Energy, Elsevier, vol. 238(PC).
    12. Leonardo Nogueira Fontoura da Silva & Marcelo Bruno Capeletti & Alzenira da Rosa Abaide & Luciano Lopes Pfitscher, 2024. "A Stochastic Methodology for EV Fast-Charging Load Curve Estimation Considering the Highway Traffic and User Behavior," Energies, MDPI, vol. 17(7), pages 1-27, April.
    13. Ch. S. V. Prasad Rao & A. Pandian & Ch. Rami Reddy & A. Giri Prasad & Ahmad Alahmadi & Yasser Alharbi, 2022. "A Hybrid AOSAOA Scheme Based on the Optimal Location for Electric Vehicle Parking Lots and Capacitors in a Grid to Care of Voltage Profile and Power Loss," Energies, MDPI, vol. 15(12), pages 1-23, June.
    14. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    15. Weihua Wu & Jieyun Wei & Eun-Young Nam & Yifan Zhang & Dongphil Chun, 2024. "Data Drive—Charging Behavior of Electric Vehicle Users with Variable Roles," Sustainability, MDPI, vol. 16(11), pages 1-18, June.
    16. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    17. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    18. Nkounga, Willy Magloire & Ndiaye, Mouhamadou Falilou & Cisse, Oumar & Grandvaux, Françoise & Tabourot, Laurent & Ndiaye, Mamadou Lamine, 2022. "Automatic control and dispatching of charging currents to a charging station for power-assisted bikes," Energy, Elsevier, vol. 246(C).
    19. Ki-Beom Lee & Mohamed A. Ahmed & Dong-Ki Kang & Young-Chon Kim, 2020. "Deep Reinforcement Learning Based Optimal Route and Charging Station Selection," Energies, MDPI, vol. 13(23), pages 1-22, November.
    20. Hui Guo & Dandan Gong & Lijun Zhang & Wenke Mo & Feng Ding & Fei Wang, 2022. "Time-Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing," Energies, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.