IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3669-d1131844.html
   My bibliography  Save this article

A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management

Author

Listed:
  • Pegah Alaee

    (Department of Energy Economics, Czech Technical University in Prague, 166 27 Prague, Czech Republic)

  • Julius Bems

    (Department of Energy Economics, Czech Technical University in Prague, 166 27 Prague, Czech Republic)

  • Amjad Anvari-Moghaddam

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

The transition from internal combustion engines to electric vehicles (EVs) has received significant attention and investment due to its potential in reducing greenhouse gas emissions. The integration of EVs into electric and transport systems presents both benefits and challenges in energy management. The scheduling of EV charging can alleviate congestion in the electric system and reduce waiting times for EV owners. The use of renewable energy sources (RESs) for EV charging and supporting the grid can help mitigate the uncertainty of these energy resources. Vehicle-to-grid (V2G) technology can be used as an alternative approach in the event of sudden high consumption of the grid. Additionally, cost minimization through large-scale coordinated planning is crucial for the future of e-mobility systems. This review paper focuses on the latest trends considering the various approaches and features in coordinated EV scheduling, as well as the influence of different stakeholders, categorized as single- and multiple-charging stations (CS) and aggregator levels. By implementing coordinated EV scheduling, various methods are presented to better manage the needs and satisfaction of EV owners as well as the profit of CS and the market trends of e-mobility systems. In this regard, EV charging strategies considering V2G, uncertainty evaluation of parameters, coordinated charging management, congestion of CSs and electrical lines, route mapping, and technical and economic aspects of the system hierarchy, including consumers, CSs and aggregators, are reviewed and discussed.

Suggested Citation

  • Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3669-:d:1131844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Jie & Huang, Yuping, 2022. "The short-term optimal resource allocation approach for electric vehicles and V2G service stations," Applied Energy, Elsevier, vol. 319(C).
    2. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    3. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    4. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
    6. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    7. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    8. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    9. Wu, Chuantao & Chen, Cen & Ma, Yuncong & Li, Feiyu & Sui, Quan & Lin, Xiangning & Wei, Fanrong & Li, Zhengtian, 2022. "Enhancing resilient restoration of distribution systems utilizing electric vehicles and supporting incentive mechanism," Applied Energy, Elsevier, vol. 322(C).
    10. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
    11. Hemmatpour, Mohammad Hasan & Rezaeian Koochi, Mohammad Hossein & Dehghanian, Pooria & Dehghanian, Payman, 2022. "Voltage and energy control in distribution systems in the presence of flexible loads considering coordinated charging of electric vehicles," Energy, Elsevier, vol. 239(PA).
    12. Rajaa Naji EL idrissi & Mohammed Ouassaid & Mohamed Maaroufi & Zineb Cabrane & Jonghoon Kim, 2023. "Optimal Cooperative Power Management Framework for Smart Buildings Using Bidirectional Electric Vehicle Modes," Energies, MDPI, vol. 16(5), pages 1-22, February.
    13. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    14. Sara Hsaini & Mounir Ghogho & My El Hassan Charaf, 2022. "An OCPP-Based Approach for Electric Vehicle Charging Management," Energies, MDPI, vol. 15(18), pages 1-14, September.
    15. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    16. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    17. Nagaraju Dharavat & Suresh Kumar Sudabattula & Suresh Velamuri & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Elmazeg Elgamli & Mokhtar Shouran & Salah Kamel, 2022. "Optimal Allocation of Renewable Distributed Generators and Electric Vehicles in a Distribution System Using the Political Optimization Algorithm," Energies, MDPI, vol. 15(18), pages 1-25, September.
    18. Hung, Ying-Chao & PakHai Lok, Horace & Michailidis, George, 2022. "Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 526-541.
    19. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    20. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    21. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    22. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    23. Welzel, Fynn & Klinck, Carl-Friedrich & Pohlmann, Yannick & Bednarczyk, Mats, 2021. "Grid and user-optimized planning of charging processes of an electric vehicle fleet using a quantitative optimization model," Applied Energy, Elsevier, vol. 290(C).
    24. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    25. Rajani, B. & Kommula, Bapayya Naidu, 2022. "An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach," Energy, Elsevier, vol. 245(C).
    26. Majed A. Alotaibi & Ali M. Eltamaly, 2022. "Upgrading Conventional Power System for Accommodating Electric Vehicle through Demand Side Management and V2G Concepts," Energies, MDPI, vol. 15(18), pages 1-27, September.
    27. Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).
    28. Kaile Zhou & Lulu Wen, 2022. "Electric Vehicle Charging Scheduling Considering Different Charging Demands," Springer Books, in: Smart Energy Management, chapter 0, pages 223-249, Springer.
    29. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafał Różycki & Zofia Walczak & Grzegorz Waligóra, 2024. "Discovering the Properties of a Problem of Scheduling Battery Charging Jobs to Minimize the Total Time with the Use of Harmonic Numbers," Energies, MDPI, vol. 17(15), pages 1-18, August.
    2. Li, Mei & Zeman, Abdol, 2023. "Addressing greenhouse gas emissions and optimizing power systems: A novel approach for clean electricity integration in commercial buildings," Applied Energy, Elsevier, vol. 352(C).
    3. Mustafa Tahir & Sideng Hu & Haoqi Zhu, 2024. "Advanced Levelized Cost Evaluation Method for Electric Vehicle Stations Concurrently Producing Electricity and Hydrogen," Energies, MDPI, vol. 17(11), pages 1-20, May.
    4. Menghwar, Mohan & Yan, Jie & Chi, Yongning & Asim Amin, M. & Liu, Yongqian, 2024. "A market-based real-time algorithm for congestion alleviation incorporating EV demand response in active distribution networks," Applied Energy, Elsevier, vol. 356(C).
    5. Aleksandra Alicja Olejarz & Małgorzata Kędzior-Laskowska, 2024. "How Much Progress Have We Made towards Decarbonization? Policy Implications Based on the Demand for Electric Cars in Poland," Energies, MDPI, vol. 17(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    2. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    3. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
    4. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    5. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    6. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    7. Hemmatpour, Mohammad Hasan & Rezaeian Koochi, Mohammad Hossein & Dehghanian, Pooria & Dehghanian, Payman, 2022. "Voltage and energy control in distribution systems in the presence of flexible loads considering coordinated charging of electric vehicles," Energy, Elsevier, vol. 239(PA).
    8. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    11. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    12. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Thangaraj Yuvaraj & Thirukoilur Dhandapani Suresh & Arokiasamy Ananthi Christy & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2023. "Modelling and Allocation of Hydrogen-Fuel-Cell-Based Distributed Generation to Mitigate Electric Vehicle Charging Station Impact and Reliability Analysis on Electrical Distribution Systems," Energies, MDPI, vol. 16(19), pages 1-31, September.
    14. Li, Xinyu & Cao, Yue & Yan, Fei & Li, Yuzhe & Zhao, Wanlin & Wang, Yue, 2022. "Towards user-friendly energy supplement service considering battery degradation cost," Energy, Elsevier, vol. 249(C).
    15. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    16. Afaq Ahmad & Muhammad Khalid & Zahid Ullah & Naveed Ahmad & Mohammad Aljaidi & Faheem Ahmed Malik & Umar Manzoor, 2022. "Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging," Energies, MDPI, vol. 15(24), pages 1-32, December.
    17. Lai, Chun Sing & Chen, Dashen & Zhang, Jinning & Zhang, Xin & Xu, Xu & Taylor, Gareth A. & Lai, Loi Lei, 2022. "Profit maximization for large-scale energy storage systems to enable fast EV charging infrastructure in distribution networks," Energy, Elsevier, vol. 259(C).
    18. Liu, Shuohan & Cao, Yue & Ni, Qiang & Xu, Lexi & Zhu, Yongdong & Zhang, Xin, 2023. "Towards reservation-based E-mobility service via hybrid of V2V and G2V charging modes," Energy, Elsevier, vol. 268(C).
    19. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    20. Zhang, Gang & Wen, Jiaxing & Xie, Tuo & Zhang, Kaoshe & Jia, Rong, 2023. "Bi-layer economic scheduling for integrated energy system based on source-load coordinated carbon reduction," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3669-:d:1131844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.