IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2682-d1406602.html
   My bibliography  Save this article

Advanced Levelized Cost Evaluation Method for Electric Vehicle Stations Concurrently Producing Electricity and Hydrogen

Author

Listed:
  • Mustafa Tahir

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Sideng Hu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Haoqi Zhu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

This study develops a new method to evaluate the economic viability of co-generation electric vehicle stations that concurrently generate electricity and hydrogen for charging battery electric vehicles and refueling hydrogen vehicles. The approach uniquely differentiates the costs associated with various energy outputs in co-generation stations and includes often-overlooked peripheral devices critical for accurate evaluation of the levelized cost of electricity (LCOE) and hydrogen (LCOH). The method was tested across three design configurations: two featuring single storage options (battery and fuel cell, respectively) and a third using hybrid storage employing both. Each configuration was modeled, simulated, and optimized using HOMER Pro 3.14.2 to determine the most optimal sizing solution. Then, based on the optimal sizing of each design, LCOE and LCOH were evaluated using the proposed method in this study. The analysis revealed that excluding often-overlooked peripheral devices could lead to a 27.7% error in LCOH evaluation, while the impact on LCOE was less than 1%. Among different configurations, the design with hybrid storage proved economically superior, achieving a total levelized cost of energy (TLCOE) for the entire system of USD 0.113/kWh, with the LCOE at USD 0.025/kWh and LCOH at USD 0.088/kWh (or USD 3.46/kg). Comparative analysis with state-of-the-art studies confirmed the accuracy of the proposed method. This study provides a more precise and holistic approach that can be leveraged for the feasibility analysis of electric vehicle stations globally, enhancing strategic decision-making in sustainable energy planning.

Suggested Citation

  • Mustafa Tahir & Sideng Hu & Haoqi Zhu, 2024. "Advanced Levelized Cost Evaluation Method for Electric Vehicle Stations Concurrently Producing Electricity and Hydrogen," Energies, MDPI, vol. 17(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2682-:d:1406602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    2. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    3. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahir, Mustafa & Hu, Sideng & Zhu, Haoqi, 2024. "Strategic operation of electric vehicle in residential microgrid with vehicle-to-home features," Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    2. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    3. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Banasiak, David & Kienberger, Thomas, 2024. "A comparative analysis of the economic feasibility of reversible hydrogen systems based on time-resolved operation optimisation," Applied Energy, Elsevier, vol. 371(C).
    5. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    6. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.
    7. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
    8. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    9. Limei Liu & Xinyun Chen & Yi Yang & Junfeng Yang & Jie Chen, 2023. "Prioritization of Off-Grid Hybrid Renewable Energy Systems for Residential Communities in China Considering Public Participation with Basic Uncertain Linguistic Information," Sustainability, MDPI, vol. 15(11), pages 1-30, May.
    10. Dong, Weiwei & Niu, XiaoQin & Nassani, Abdelmohsen A. & Naseem, Imran & Zaman, Khalid, 2024. "E-commerce mineral resource footprints: Investigating drivers for sustainable mining development," Resources Policy, Elsevier, vol. 89(C).
    11. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    12. Abdi, Ali & Astaraei, Fatemeh Razi & Rajabi, Nahid, 2024. "GIS-AHP-GAMS based analysis of wind and solar energy integration for addressing energy shortage in industries: A case study," Renewable Energy, Elsevier, vol. 225(C).
    13. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    14. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    15. Ali, Aamir & Bughio, Ateeq-u-Rehman & Abbas, Ghulam & Keerio, M.U. & Mugheri, N.H. & Memon, Shaina & Saand, A.S., 2024. "Optimization of distributed energy resources planning and battery energy storage management via large-scale multi-objective evolutionary algorithm," Energy, Elsevier, vol. 311(C).
    16. Bohteh Loh, Boris-Edmond & Nfah, Eustace Mbaka, 2024. "Techno – economic and environmental design of a three – phase hybrid renewable energy system for UNVDA Ndop Cameroon using meta-heuristic and analytical approaches," Renewable Energy, Elsevier, vol. 237(PA).
    17. Mohammad Hossein Jahangir & Seyed Ali Mousavi & Ruhollah Asayesh Zarchi, 2021. "Implementing single- and multi-year sensitivity analyses to propose several feasible solutions for meeting the electricity demand in large-scale tourism sectors applying renewable systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14494-14527, October.
    18. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    19. Chmielniak, Tadeusz & Remiorz, Leszek, 2020. "Entropy analysis of hydrogen production in electrolytic processes," Energy, Elsevier, vol. 211(C).
    20. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2682-:d:1406602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.