IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3228-d259831.html
   My bibliography  Save this article

Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures

Author

Listed:
  • Marek Urbanik

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Rzeszow 35-959, Poland)

  • Barbara Tchórzewska-Cieślak

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Rzeszow 35-959, Poland)

  • Katarzyna Pietrucha-Urbanik

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Rzeszow 35-959, Poland)

Abstract

The development of appropriate methods by which to assess the functioning of gas pipelines helps limits the consequences of disasters, in that way protecting users better. Assessment methods of this kind are presented in this paper, which advocates the integrated risk area identification method. The risk taken account of is understood to be a function of the probability or frequency of occurrence of undesirable events, and comes with parameters defining the consequences of these events, should they arise, in terms of their magnitude. The level of system vulnerability to events of these types is a factor considered, and the risk calculation is of a kind that encompasses both quantitative and qualitative aspects. The approach taken is regarded as a quick and simple risk-assessment tool applicable to the daily operation of gas networks for a gas company. Specifically, the framework of the research carried out extends to: (1) Estimation of the average cost of failure of gas pipelines in the case of an urban agglomeration in SE Poland; (2) assessment of the level of integrated risk facing the gas-supply subsystem, by reference to the risk area identification method; (3) failure forecasting by way of regressions with delay; and (4) conclusions regarding failure risk assessment in a gas-supply network, as well as a consideration of prospects. The framework referred here, thus constitutes the basis for both analysis and assessment of the safety of a gas-supply system.

Suggested Citation

  • Marek Urbanik & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2019. "Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures," Energies, MDPI, vol. 12(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3228-:d:259831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    2. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Marek Urbanik & Janusz R. Rak, 2018. "Approaches for Safety Analysis of Gas-Pipeline Functionality in Terms of Failure Occurrence: A Case Study," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. Biresselioglu, Mehmet Efe & Yelkenci, Tezer & Oz, Ibrahim Onur, 2015. "Investigating the natural gas supply security: A new perspective," Energy, Elsevier, vol. 80(C), pages 168-176.
    4. Marta P. Fernandes & Joaquim L. Viegas & Susana M. Vieira & João M. C. Sousa, 2017. "Segmentation of Residential Gas Consumers Using Clustering Analysis," Energies, MDPI, vol. 10(12), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Mohamed Eid, 2021. "A Case Study in View of Developing Predictive Models for Water Supply System Management," Energies, MDPI, vol. 14(11), pages 1-25, June.
    2. Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Mohamed Eid, 2020. "Water Network-Failure Data Assessment," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Yongheng Luo & Zhonglong Li & Sen Li & Fei Jiang, 2023. "Risk Assessment for Energy Stations Based on Real-Time Equipment Failure Rates and Security Boundaries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    4. Ge Zhao & Wei Li & Jinsong Zhu, 2019. "A Numerical Investigation of the Influence of Geometric Parameters on the Performance of a Multi-Channel Confluent Water Supply," Energies, MDPI, vol. 12(22), pages 1-21, November.
    5. Muhammad Rafiq & Ahsan Akbar & Saif Maqbool & Marcela Sokolová & Syed Arslan Haider & Shumaila Naz & Syed Muhammad Danish, 2022. "Corporate Risk Tolerance and Acceptability towards Sustainable Energy Transition," Energies, MDPI, vol. 15(2), pages 1-19, January.
    6. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Mohamed Eid, 2021. "Functional Safety Concept to Support Hazard Assessment and Risk Management in Water-Supply Systems," Energies, MDPI, vol. 14(4), pages 1-13, February.
    7. Dawid Szpak & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Mohamed Eid, 2022. "A Grey-System Theory Approach to Assess the Safety of Gas-Supply Systems," Energies, MDPI, vol. 15(12), pages 1-13, June.
    8. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Dorota Papciak, 2019. "An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis," Resources, MDPI, vol. 8(4), pages 1-11, September.
    9. Jacek Paś & Adam Rosiński & Michał Wiśnios & Marek Stawowy, 2022. "Assessing the Operation System of Fire Alarm Systems for Detection Line and Circuit Devices with Various Damage Intensities," Energies, MDPI, vol. 15(9), pages 1-23, April.
    10. Katarzyna Pietrucha-Urbanik & Janusz R. Rak, 2020. "Consumers’ Perceptions of the Supply of Tap Water in Crisis Situations," Energies, MDPI, vol. 13(14), pages 1-20, July.
    11. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Jesús Chazarra-Zapata & José Miguel Molina-Martínez & Francisco-Javier Pérez de la Cruz & Dolores Parras-Burgos & Antonio Ruíz Canales, 2020. "How to Reduce the Carbon Footprint of an Irrigation Community in the South-East of Spain by Use of Solar Energy," Energies, MDPI, vol. 13(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2018. "Approaches to Methods of Risk Analysis and Assessment Regarding the Gas Supply to a City," Energies, MDPI, vol. 11(12), pages 1-13, November.
    2. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Marek Urbanik & Janusz R. Rak, 2018. "Approaches for Safety Analysis of Gas-Pipeline Functionality in Terms of Failure Occurrence: A Case Study," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. Yuan, Jiahang & Wang, Li & Li, Yating & Wang, Yuwei & Ma, Tao & Luo, Xinggang, 2022. "Set pair prediction for Chinese natural gas energy security based on higher-order Markov chain with risk attitude," Resources Policy, Elsevier, vol. 77(C).
    4. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    5. Xie, Minghua & Min, Jialin & Fang, Xingming & Sun, Chuanwang & Zhang, Zhen, 2022. "Policy selection based on China's natural gas security evaluation and comparison," Energy, Elsevier, vol. 247(C).
    6. Ding, Yueting & Zhang, Ming & Chen, Sai & Nie, Rui, 2020. "Assessing the resilience of China’s natural gas importation under network disruptions," Energy, Elsevier, vol. 211(C).
    7. Su, Meirong & Zhang, Mingqi & Lu, Weiwei & Chang, Xin & Chen, Bin & Liu, Gengyuan & Hao, Yan & Zhang, Yan, 2017. "ENA-based evaluation of energy supply security: Comparison between the Chinese crude oil and natural gas supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 888-899.
    8. Balali, Amirhossein & Valipour, Alireza & Edwards, Rodger & Moehler, Robert, 2021. "Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    10. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    11. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    12. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    13. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    14. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    15. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Philipp Hauser & Sina Heidari & Christoph Weber & Dominik Möst, 2019. "Does Increasing Natural Gas Demand in the Power Sector Pose a Threat of Congestion to the German Gas Grid? A Model-Coupling Approach," Energies, MDPI, vol. 12(11), pages 1-22, June.
    17. Sutrisno, Aziiz & Nomaler, Ӧnder & Alkemade, Floor, 2021. "Has the global expansion of energy markets truly improved energy security?," Energy Policy, Elsevier, vol. 148(PA).
    18. Gong, Chengzhu & Gong, Nianjiao & Qi, Rui & Yu, Shiwei, 2020. "Assessment of natural gas supply security in Asia Pacific: Composite indicators with compromise Benefit-of-the-Doubt weights," Resources Policy, Elsevier, vol. 67(C).
    19. Dastan, Seyit Ali & Selcuk, Orhun, 2016. "Review of the security of supply in Turkish energy markets: Lessons from the winter shortages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 958-971.
    20. Ye, Ruike & Zhou, Yunheng & Chen, Jiawei & Tu, Kevin, 2021. "Natural gas security evaluation from a supply vs. demand perspective: A quantitative application of four As," Energy Policy, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3228-:d:259831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.