IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13570-d1237546.html
   My bibliography  Save this article

Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China

Author

Listed:
  • Guoqun Ma

    (School of Economics and Management, Guangxi Normal University, Guilin 541006, China
    Pearl River-Xijiang River Economic Belt Development Institute, Guangxi Normal University, Guilin 541004, China)

  • Danyang Lv

    (School of Economics and Management, Guangxi Normal University, Guilin 541006, China)

  • Tuanbiao Jiang

    (School of Economics and Management, Guangxi Normal University, Guilin 541006, China
    Pearl River-Xijiang River Economic Belt Development Institute, Guangxi Normal University, Guilin 541004, China
    Center for Southwest Urban and Regional Development, Guangxi Normal University, Guilin 541004, China)

  • Yuxi Luo

    (School of Economics and Management, Guangxi Normal University, Guilin 541006, China
    Pearl River-Xijiang River Economic Belt Development Institute, Guangxi Normal University, Guilin 541004, China
    Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin 541004, China)

Abstract

As an important means of farmland policy, whether land transfer can promote agricultural green transformation is worthy of further study; however, related research is relatively rare. Based on the inter-provincial panel data from 2005 to 2020, this paper examines the influence of land transfer on agricultural green transformation and its underlying mechanism by using a two-way fixed effect model and an intermediary effect model. This study reveals significant findings as follows: (1) Land transfer substantially promotes agricultural green transformation. (2) Energy consumption is a major contributor to the growth of agricultural carbon emissions; however, land transfer can mitigate this by reducing energy consumption. (3) Land transfer can promote agricultural green transformation by fostering agricultural technology progress. (4) Further analysis reveals that land transfer in economically developed areas and the southeastern side of the “Hu-Huanyong Line” significantly enhances agricultural green transformation. Based on these findings, this paper suggests promoting land transfer while considering regional differences. Additionally, attention should be directed towards reducing energy consumption and encouraging agricultural technology’s progress.

Suggested Citation

  • Guoqun Ma & Danyang Lv & Tuanbiao Jiang & Yuxi Luo, 2023. "Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13570-:d:1237546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongwei He & Guangcai Zhang & Kai You & Jun Wu, 2023. "Property rights and market participation: evidence from the land titling program in rural China," Journal of Chinese Governance, Taylor & Francis Journals, vol. 8(1), pages 110-133, January.
    2. Campi, Mercedes & Dueñas, Marco & Fagiolo, Giorgio, 2021. "Specialization in food production affects global food security and food systems sustainability," World Development, Elsevier, vol. 141(C).
    3. Min Zhou & Hua Zhang & Nan Ke, 2022. "Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models," IJERPH, MDPI, vol. 19(19), pages 1-20, October.
    4. Richard Fuchs & Calum Brown & Mark Rounsevell, 2020. "Europe’s Green Deal offshores environmental damage to other nations," Nature, Nature, vol. 586(7831), pages 671-673, October.
    5. Otsuka, Keijiro & Suyanto, S. & Sonobe, Tetsushi & Tomich, Thomas P., 2001. "Evolution of land tenure institutions and development of agroforestry: evidence from customary land areas of Sumatra," Agricultural Economics, Blackwell, vol. 25(1), pages 85-101, June.
    6. Gao, Yang & Liu, Bei & Yu, Lili & Yang, Haoran & Yin, Shijiu, 2019. "Social capital, land tenure and the adoption of green control techniques by family farms: Evidence from Shandong and Henan Provinces of China," Land Use Policy, Elsevier, vol. 89(C).
    7. Kai Huang & Xin Deng & Yi Liu & Zhuolin Yong & Dingde Xu, 2020. "Does off-Farm Migration of Female Laborers Inhibit Land Transfer? Evidence from Sichuan Province, China," Land, MDPI, vol. 9(1), pages 1-14, January.
    8. Welsch, Heinz & Ochsen, Carsten, 2005. "The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade," Energy Economics, Elsevier, vol. 27(1), pages 93-111, January.
    9. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    10. Wong, Ho Lun & Wei, Xiangdong & Kahsay, Haftom Bayray & Gebreegziabher, Zenebe & Gardebroek, Cornelis & Osgood, Daniel E. & Diro, Rahel, 2020. "Effects of input vouchers and rainfall insurance on agricultural production and household welfare: Experimental evidence from northern Ethiopia," World Development, Elsevier, vol. 135(C).
    11. Wang, Han & Lu, Siying & Lu, Bo & Nie, Xin, 2021. "Overt and covert: The relationship between the transfer of land development rights and carbon emissions," Land Use Policy, Elsevier, vol. 108(C).
    12. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    13. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    14. Ningbo Cui & Xuezhen Ba & Jin Dong & Xiaofan Fan, 2022. "Does Farmland Transfer Contribute to Reduction of Chemical Fertilizer Use? Evidence from Heilongjiang Province, China," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Yikang Liu, 2024. "The Impact of Rural Industrial Integration on Agricultural Carbon Emissions Evidence from China Provinces Data," Sustainability, MDPI, vol. 16(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris D. Arnot & Martin K. Luckert & Peter C. Boxall, 2011. "What Is Tenure Security? Conceptual Implications for Empirical Analysis," Land Economics, University of Wisconsin Press, vol. 87(2), pages 297-311.
    2. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    3. M. Casari & M. Lisciandra, 2013. "Gender Discrimination in Property Rights," Working Papers wp914, Dipartimento Scienze Economiche, Universita' di Bologna.
    4. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    5. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    6. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    7. Davide Dell’Unto & Gabriele Dono & Raffaele Cortignani, 2023. "Impacts of Environmental Targets on the Livestock Sector: An Assessment Tool Applied to Italy," Agriculture, MDPI, vol. 13(4), pages 1-15, March.
    8. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    9. Hanna Dudek & Joanna Myszkowska-Ryciak & Agnieszka Wojewódzka-Wiewiórska, 2021. "Profiles of Food Insecurity: Similarities and Differences across Selected CEE Countries," Energies, MDPI, vol. 14(16), pages 1-19, August.
    10. Dong, Xianjing & Zhang, Xiaojuan & Zhang, Congcong & Bi, Chunyu, 2023. "Building sustainability education for green recovery in the energy resource sector: A cross country analysis," Resources Policy, Elsevier, vol. 81(C).
    11. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    12. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    13. Karmaker, Shamal Chandra & Hosan, Shahadat & Chapman, Andrew J. & Saha, Bidyut Baran, 2021. "The role of environmental taxes on technological innovation," Energy, Elsevier, vol. 232(C).
    14. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    15. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    16. Ang, B.W. & Liu, N., 2006. "A cross-country analysis of aggregate energy and carbon intensities," Energy Policy, Elsevier, vol. 34(15), pages 2398-2404, October.
    17. Laure Latruffe & Gerald Schwarz, 2022. "Insights on Transitions to Agroecological Farming from across Europe," EuroChoices, The Agricultural Economics Society, vol. 21(3), pages 3-4, December.
    18. Lejla Terzić, 2024. "An investigation of the interlinkages between green growth dimensions, the energy trilemma, and sustainable development goals: Evidence from G7 and E7 economies," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 1, pages 24-53.
    19. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    20. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13570-:d:1237546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.