IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9386-d1168427.html
   My bibliography  Save this article

Effects and Spatial Spillover of Manufacturing Agglomeration on Carbon Emissions in the Yellow River Basin, China

Author

Listed:
  • Dan Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Yan Liu

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Yu Cheng

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract

Manufacturing agglomeration is an important manifestation for cities to enhance their competitiveness, and the resource and environmental effects caused by agglomeration have become a hot topic. Based on the relevant data of prefecture-level cities in the Yellow River Basin from 2006 to 2019, this study used a Markov transition matrix to study the characteristics of carbon emission transfer and constructed an SDM model to analyze the effect of manufacturing agglomeration on carbon emissions and spatial spillover; the study drew the following conclusions: carbon emissions and the concentrations of manufacturing industries in the Yellow River Basin are on the rise, with carbon emissions showing a distribution pattern of “downstream > midstream > upstream”. Manufacturing agglomeration has a significant positive influence on carbon emissions, reflecting the necessity for the green transformation of manufacturing agglomeration. Manufacturing agglomeration has a spatial spillover effect on carbon emissions. The direct effect is positive, and the indirect effect is negative. The polarization effect caused by agglomeration weakens the development degree of neighboring areas, which may reflect the technological spillover effect of manufacturing agglomeration on neighboring areas. Manufacturing agglomeration has regional heterogeneity in carbon emissions. Compared with the middle and lower reaches of the Yellow River Basin, the effect is more obvious in the upper reaches. The study proposes countermeasures in terms of optimizing the spatial pattern of the manufacturing industry and other aspects to provide references for promoting the transformation development of the manufacturing industry in the Yellow River Basin.

Suggested Citation

  • Dan Wang & Yan Liu & Yu Cheng, 2023. "Effects and Spatial Spillover of Manufacturing Agglomeration on Carbon Emissions in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9386-:d:1168427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giutini, Ron & Gaudette, Kevin, 2003. "Remanufacturing: The next great opportunity for boosting US productivity," Business Horizons, Elsevier, vol. 46(6), pages 41-48.
    2. Yali Zhang & Yihan Wang & Xiaoshu Hou, 2019. "Carbon Mitigation for Industrial Sectors in the Jing-Jin-Ji Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    3. Liyuan Fu & Qing Wang, 2022. "Spatial and Temporal Distribution and the Driving Factors of Carbon Emissions from Urban Production Energy Consumption," IJERPH, MDPI, vol. 19(19), pages 1-29, September.
    4. Shen, Neng & Peng, Hui, 2021. "Can industrial agglomeration achieve the emission-reduction effect?," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    6. Dingbang, Cang & Cang, Chen & Qing, Chen & Lili, Sui & Caiyun, Cui, 2021. "Does new energy consumption conducive to controlling fossil energy consumption and carbon emissions?-Evidence from China," Resources Policy, Elsevier, vol. 74(C).
    7. Fang, Jiayu & Tang, Xue & Xie, Rui & Han, Feng, 2020. "The effect of manufacturing agglomerations on smog pollution," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 92-101.
    8. Tommi Inkinen & Inka Kaakinen, 2016. "Economic Geography of Knowledge-Intensive Technology Clusters: Lessons from the Helsinki Metropolitan Area," Journal of Urban Technology, Taylor & Francis Journals, vol. 23(1), pages 95-114, January.
    9. Shuyi Wang & Daizhong Su, 2022. "Sustainable Product Innovation and Consumer Communication," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    10. Song, Yan & Zhang, Ming, 2019. "Research on the gravity movement and mitigation potential of Asia's carbon dioxide emissions," Energy, Elsevier, vol. 170(C), pages 31-39.
    11. Xu, Jin-Jin & Wang, Hai-Jie & Tang, Kai, 2022. "The sustainability of industrial structure on green eco-efficiency in the Yellow River Basin," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 775-788.
    12. Xinyu Zhang & Mufei Shen & Yupeng Luan & Weijia Cui & Xueqin Lin, 2022. "Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    13. Wang-Helmreich, Hanna & Kreibich, Nicolas, 2019. "The potential impacts of a domestic offset component in a carbon tax on mitigation of national emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 453-460.
    14. Jing Song & Mengyuan Li & Shaosong Wang & Tao Ye, 2022. "To What Extent Does Environmental Regulation Influence Emission Reduction? Evidence from Local and Neighboring Locations in China," Sustainability, MDPI, vol. 14(15), pages 1-9, August.
    15. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    16. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    17. Dan O'Donoghue & Bill Gleave, 2004. "A Note on Methods for Measuring Industrial Agglomeration," Regional Studies, Taylor & Francis Journals, vol. 38(4), pages 419-427.
    18. Kang Zhao & Rui Zhang & Hong Liu & Geyi Wang & Xialing Sun, 2021. "Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    19. Lan, Fei & Sun, Li & Pu, Wenyan, 2021. "Research on the influence of manufacturing agglomeration modes on regional carbon emission and spatial effect in China," Economic Modelling, Elsevier, vol. 96(C), pages 346-352.
    20. Clark, William C. & Gleick, Peter H., 2010. "Climate Change and the Integrity of Science," Scholarly Articles 9795466, Harvard Kennedy School of Government.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongfeng Zhang & Miao Liu & Yixiang Wang & Xiangjiang Ding & Yueting Li, 2023. "Spatio-Temporal Evolution and Action Path of Environmental Governance on Carbon Emissions: A Case Study of Urban Agglomerations in the Yellow River Basin," Sustainability, MDPI, vol. 15(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    2. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    3. Huaxi Yuan & Longhui Zou & Xiangyong Luo & Yidai Feng, 2022. "How Does Manufacturing Agglomeration Affect Green Development? A Spatial and Nonlinear Perspective," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    4. Kwaku Addai & Sema Yılmaz Genç & Rui Alexandre Castanho & Gualter Couto & Ayhan Orhan & Muhammad Umar & Dervis Kirikkaleli, 2023. "Financial Risk and Environmental Sustainability in Poland: Evidence from Novel Fourier-Based Estimators," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    5. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    6. Yuan Wang & Anlu Zhang & Min Min & Ke Zhao & Weiyan Hu & Fude Qin, 2023. "Research on the Effect of Manufacturing Agglomeration on Green Use Efficiency of Industrial Land," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    7. Mingjuan Ma & Shuifa Ke & Qiang Li & Yaqi Wu, 2023. "Towards Carbon Neutrality: A Comprehensive Analysis on Total Factor Carbon Productivity of the Yellow River Basin, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    8. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Yugang He & Chunlei Wang, 2022. "Does Buddhist Tourism Successfully Result in Local Sustainable Development?," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    10. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    12. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    13. Jiayuan Zhou & Yunxia Li & Bo Li, 2022. "Restructure or Misallocation? Enterprises’ Carbon Emission Intensity under Market Integration," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    14. Deng Li & Ying Peng & Chunxiang Guo & Ruwen Tan, 2019. "Pricing Strategy of Construction and Demolition Waste Considering Retailer Fairness Concerns under a Governmental Regulation Environment," IJERPH, MDPI, vol. 16(20), pages 1-24, October.
    15. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    16. Koech Cheruiyot, 2022. "Detecting spatial economic clusters using kernel density and global and local Moran's I analysis in Ekurhuleni metropolitan municipality, South Africa," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(2), pages 307-327, April.
    17. Roberto Antonietti & Ron Boschma, 2021. "Social capital, resilience, and regional diversification in Italy [Social capital, innovation and growth: evidence from Europe]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(3), pages 762-777.
    18. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    19. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    20. František Milichovský, 2017. "An Impact of Reverse Logistics Activities on Marketing Communication," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 669-678.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9386-:d:1168427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.