IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7949-d1145599.html
   My bibliography  Save this article

Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)

Author

Listed:
  • Xianwang Li

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Zhongxiang Huang

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Saihu Liu

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Jinxin Wu

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Yuxiang Zhang

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

Abstract

The accurate forecasting of short-term subway passenger flow is beneficial for promoting operational efficiency and passenger satisfaction. However, the nonlinearity and nonstationarity of passenger flow time series bring challenges to short-term passenger flow prediction. To solve this challenge, a prediction model based on improved variational mode decomposition (IVMD) and multi-model combination is proposed. Firstly, the mixed-strategy improved sparrow search algorithm (MSSA) is used to adaptively determine the parameters of the VMD with envelope entropy as the fitness value. Then, IVMD is applied to decompose the original passenger flow time series into several sub-series adaptively. Meanwhile, the sample entropy is utilized to divide the sub-series into high-frequency and low-frequency components, and different models are established to predict the sub-series with different frequencies. Finally, the MSSA is employed to determine the weight coefficients of each sub-series to combine the prediction results of the sub-series and get the final passenger flow prediction results. To verify the prediction performance of the established model, passenger flow datasets from four different types of Nanning Metro stations were taken as examples for carrying out experiments. The experimental results showed that: (a) The proposed hybrid model for short-term passenger flow prediction is superior to several baseline models in terms of both prediction accuracy and versatility. (b) The proposed hybrid model is excellent in multi-step prediction. Taking station 1 as an example, the MAEs of the proposed model are 3.677, 5.7697, and 8.1881, respectively, which can provide technical support for subway operations management.

Suggested Citation

  • Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7949-:d:1145599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Qiu & Yun Zhao, 2022. "Research on Improved Traffic Flow Prediction Network Based on CapsNet," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    2. Zhou, Tuqiang & Wu, Wanting & Peng, Liqun & Zhang, Mingyang & Li, Zhixiong & Xiong, Yubing & Bai, Yuelong, 2022. "Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Binglei Xie & Yu Sun & Xiaolong Huang & Le Yu & Gangyan Xu, 2020. "Travel Characteristics Analysis and Passenger Flow Prediction of Intercity Shuttles in the Pearl River Delta on Holidays," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    4. Pengpeng Jiao & Ruimin Li & Tuo Sun & Zenghao Hou & Amir Ibrahim, 2016. "Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, March.
    5. Xinqiang Chen & Jinquan Lu & Jiansen Zhao & Zhijian Qu & Yongsheng Yang & Jiangfeng Xian, 2020. "Traffic Flow Prediction at Varied Time Scales via Ensemble Empirical Mode Decomposition and Artificial Neural Network," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    6. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    7. Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    8. Krishna Rayi, Vijaya & Mishra, S.P. & Naik, Jyotirmayee & Dash, P.K., 2022. "Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting," Energy, Elsevier, vol. 244(PA).
    9. Omer Saud Azeez & Biswajeet Pradhan & Helmi Z. M. Shafri, 2018. "Vehicular CO Emission Prediction Using Support Vector Regression Model and GIS," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    10. Kui Yang & Bofu Wang & Xiang Qiu & Jiahua Li & Yuze Wang & Yulu Liu, 2022. "Multi-Step Short-Term Wind Speed Prediction Models Based on Adaptive Robust Decomposition Coupled with Deep Gated Recurrent Unit," Energies, MDPI, vol. 15(12), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    3. Libiao Chen & Qiang Ren & Juncheng Zeng & Fumin Zou & Sheng Luo & Junshan Tian & Yue Xing, 2023. "CSFPre: Expressway key sections based on CEEMDAN-STSGCN-FCM during the holidays for traffic flow prediction," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-22, April.
    4. Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    5. Krzysztof Cebrat & Maciej Sobczyński, 2016. "Scaling Laws in City Growth: Setting Limitations with Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
    6. Yaxin Tian & Xiang Ren & Keke Li & Xiangqian Li, 2025. "Carbon Dioxide Emission Forecast: A Review of Existing Models and Future Challenges," Sustainability, MDPI, vol. 17(4), pages 1-29, February.
    7. Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
    8. Geng, Donghan & Zhang, Yongkang & Zhang, Yunlong & Qu, Xingchuang & Li, Longfei, 2025. "A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction," Renewable Energy, Elsevier, vol. 240(C).
    9. Yang, Zihao & Dong, Sheng, 2023. "A novel decomposition-based approach for non-stationary hub-height wind speed modelling," Energy, Elsevier, vol. 283(C).
    10. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    12. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    13. Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
    14. Li, Peng & Wu, Weitiao & Pei, Xiangjing, 2023. "A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    15. repec:cdl:itsdav:qt2qk093gx is not listed on IDEAS
    16. Wei Yu & Jun Chen & Xingchen Yan, 2019. "Space‒Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    17. Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    18. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    19. V. Kamini & V. Ravi & A. Prinzie & D. Van Den Poel, 2013. "Cash Demand Forecasting in ATMs by Clustering and Neural Networks," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/865, Ghent University, Faculty of Economics and Business Administration.
    20. Sylvia Gonzalez-Gorman & Sung-Wook Kwon & Dennis Patterson, 2019. "Municipal Efforts to Reduce Greenhouse Gas Emissions: Evidence from U.S. Cities on the U.S.-Mexico Border," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    21. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7949-:d:1145599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.