IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v143y2020ics1366554520307547.html
   My bibliography  Save this article

Investigation of crowdshipping delivery trip production with real-world data

Author

Listed:
  • Shen, Hui
  • Lin, Jane

Abstract

Crowd-shipping (CS) is an innovative logistics service that occasional and professional couriers sign up for via an online platform to deliver packages upon requests by senders. Currently the demand and supply of CS is not yet well understood, largely due to the limited real-world data. This study aims to first fill this gap by analyzing the real-world CS data from the city of Atlanta, GA between April 2015 and August 2018. We first present an overview of the real-world CS data in three aspects: (1) the CS pricing scheme; (2) the CS spatial and temporal delivery patterns; and (3) comparison of preferences between the senders’ requests and the couriers’ bids. The analysis finds that the CS service has a clear price advantage over FedEx in the same-day and express service, as well as in the large, extra large, and huge size package delivery. The data analysis also reveals considerable discrepancies between senders’ and couriers’ preferences. We then compare two classes of the state-of-the-art Deep Learning (DL) methods in their ability to predict short-term CS delivery trip production. One class captures only the temporal features, namely the Long Short-term Memory Neural Network (LSTM), the Bidirectional Long Short-term Memory Neural Network (BDLSTM), and the Gated Recurrent Unit (GRU). The other class considers both spatial and temporal features, namely Convolutional Neural Network (CNN), CNN-LSTM, and ConvLSTM. The results show that ConvLSTM has overall the best predictive performance among the six DL methods considered, proving the importance of capturing both the spatial and temporal features of the delivery trip production data, as well as the convolutional nature of the spatial and temporal features in the data.

Suggested Citation

  • Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:transe:v:143:y:2020:i:c:s1366554520307547
    DOI: 10.1016/j.tre.2020.102106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520307547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Shuyun & Choi, Tsan-Ming & Lee, Ka-Man & Lin, Lei, 2020. "Intelligent service capacity allocation for cross-border-E-commerce related third-party-forwarding logistics operations: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    2. Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    3. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    4. Wenyi Chen & Martijn Mes & Marco Schutten, 2018. "Multi-hop driver-parcel matching problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 517-553, September.
    5. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    6. Kun Xie & Kaan Ozbay & Abdullah Kurkcu & Hong Yang, 2017. "Analysis of Traffic Crashes Involving Pedestrians Using Big Data: Investigation of Contributing Factors and Identification of Hotspots," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1459-1476, August.
    7. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    8. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    9. Michael Crew & Pier Luigi Parcu & Timothy Brennan (ed.), 2017. "The Changing Postal and Delivery Sector," Topics in Regulatory Economics and Policy, Springer, number 978-3-319-46046-8, June.
    10. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
    11. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    2. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    3. Hou, Ting & Zhang, Wen, 2021. "Optimal two-stage elimination contests for crowdsourcing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. Huang, Zhiwen & Li, Tong & Huang, Kexin & Ke, Hanbing & Lin, Mei & Wang, Qiuwang, 2022. "Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning," Energy, Elsevier, vol. 261(PA).
    5. Wang, Yi-Jia & Wang, Yue & Huang, George Q. & Lin, Ciyun, 2024. "Public acceptance of crowdsourced delivery from a customer perspective," European Journal of Operational Research, Elsevier, vol. 317(3), pages 793-805.
    6. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Xiao, Haohan & Xu, Min & Wang, Shuaian, 2023. "A game-theoretic model for crowd-shipping operations with profit improvement strategies," International Journal of Production Economics, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. Mario Binetti & Leonardo Caggiani & Rosalia Camporeale & Michele Ottomanelli, 2019. "A Sustainable Crowdsourced Delivery System to Foster Free-Floating Bike-Sharing," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    4. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    5. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    6. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.
    7. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    8. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    9. Yıldız, Barış, 2021. "Package routing problem with registered couriers and stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    10. Patricija Bajec & Danijela Tuljak-Suban, 2022. "A Strategic Approach for Promoting Sustainable Crowdshipping in Last-Mile Deliveries," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    11. Le, Tho V. & Ukkusuri, Satish V. & Xue, Jiawei & Van Woensel, Tom, 2021. "Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    12. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    13. Michele D. Simoni & Edoardo Marcucci & Valerio Gatta & Christian G. Claudel, 2020. "Potential last-mile impacts of crowdshipping services: a simulation-based evaluation," Transportation, Springer, vol. 47(4), pages 1933-1954, August.
    14. Yang, Dingtong & Hyland, Michael F. & Jayakrishnan, R., 2024. "Tackling the crowdsourced shared-trip delivery problem at scale with a novel decomposition heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    15. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
    16. Stokkink, Patrick & Cordeau, Jean-François & Geroliminis, Nikolas, 2024. "A column and row generation approach to the crowd-shipping problem with transfers," Omega, Elsevier, vol. 128(C).
    17. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    18. Mohri, Seyed Sina & Nassir, Neema & Thompson, Russell G. & Lavieri, Patricia Sauri, 2024. "Public transportation-based crowd-shipping initiatives: Are users willing to participate? Why not?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    19. Behrend, Moritz & Meisel, Frank, 2018. "The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 227-243.
    20. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:143:y:2020:i:c:s1366554520307547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.