IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v231y2021ics0925527320302772.html
   My bibliography  Save this article

Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data

Author

Listed:
  • Yang, Xin
  • Xue, Qiuchi
  • Ding, Meiling
  • Wu, Jianjun
  • Gao, Ziyou

Abstract

Short-term prediction of passenger volume is a complex but critical task to urban rail companies, which desire prediction methods with high accuracy, time efficiency and good practicality. Good prediction results of the outbound passenger volume at urban rail stations are important to the organization of passenger flow, and helpful to the arrangement of shuttles, especially in large transit junctions. The application of automatic fare collection (AFC) devices in urban rail transit systems helps to collect large amounts of historical data of completed journeys, which can be used by metro operators to construct a database of the urban rail passenger volume. Based on deep learning techniques and big data, this paper develops an improved spatiotemporal long short-term memory model (Sp-LSTM) to forecast short-term outbound passenger volume at urban rail stations. The proposed model predicts the outbound passenger volume on the basis of the historical data of the spatial-temporal passenger volume, station origin–destination (OD) matrix and the operation data of the rail transit network. Finally, based on actual data of the Beijing Metro Airport Line, a case study is carried out to compare the proposed Sp-LSTM with other prediction methods, i.e., the general long short-term memory model (LSTM), the autoregressive integrated moving average model (ARIMA), and the non-linear autoregressive neural network model (NAR), and the results show that the proposed method outperforms the others.

Suggested Citation

  • Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320302772
    DOI: 10.1016/j.ijpe.2020.107920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320302772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puchalsky, Weslly & Ribeiro, Gabriel Trierweiler & da Veiga, Claudimar Pereira & Freire, Roberto Zanetti & Santos Coelho, Leandro dos, 2018. "Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand," International Journal of Production Economics, Elsevier, vol. 203(C), pages 174-189.
    2. Pengpeng Jiao & Ruimin Li & Tuo Sun & Zenghao Hou & Amir Ibrahim, 2016. "Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, March.
    3. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    4. Lam, William H. K. & Cheung, Chung-Yu & Lam, C. F., 1999. "A study of crowding effects at the Hong Kong light rail transit stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 401-415, June.
    5. Chen, Mu-Chen & Wei, Yu, 2011. "Exploring time variants for short-term passenger flow," Journal of Transport Geography, Elsevier, vol. 19(4), pages 488-498.
    6. Qiuchi Xue & Xin Yang & Jianjun Wu & Huijun Sun & Haodong Yin & Yunchao Qu, 2019. "Urban Rail Timetable Optimization to Improve Operational Efficiency with Flexible Routing Plans: A Nonlinear Integer Programming Model," Sustainability, MDPI, vol. 11(13), pages 1-26, July.
    7. Li, Xiang & Lo, Hong K., 2014. "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 73-89.
    8. Li, Xiang & Lo, Hong K., 2014. "Energy minimization in dynamic train scheduling and control for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 269-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xingxing & Li, Yang & Guo, Xin & Ding, Meiling & Yang, Jingxuan, 2023. "Simulation of energy-efficient operation for metro trains: A discrete event-driven method based on multi-agent theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Yang, Hongtai & Ping, An & Wei, Hongmin & Zhai, Guocong, 2023. "Unique in the metro system: The likelihood to re-identify a metro user with limited trajectory points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    3. Jian Li & Lu Zhang & Bu Liu & Ningning Shi & Liang Li & Haodong Yin, 2023. "Travel-Energy-Based Timetable Optimization in Urban Subway Systems," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    4. Li, Yang & Yang, Xin & Wu, Jianjun & Sun, Huijun & Guo, Xin & Zhou, Li, 2021. "Discrete-event simulations for metro train operation under emergencies: A multi-agent based model with parallel computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Chengguang Liu & Jiaqi Zhang & Xixi Luo & Yulin Yang & Chao Hu, 2023. "Railway Freight Demand Forecasting Based on Multiple Factors: Grey Relational Analysis and Deep Autoencoder Neural Networks," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    6. Anupriya, & Graham, Daniel J. & Bansal, Prateek & Hörcher, Daniel & Anderson, Richard, 2023. "Optimal congestion control strategies for near-capacity urban metros: Informing intervention via fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Fei Dou & Huiru Zhang & Haodong Yin & Yun Wei & Yao Ning, 2022. "An Optimization Method of Urban Rail Train Operation Scheme Based on the Control of Load Factor," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    8. Ma, Zhiao & Yang, Xin & Wu, Jianjun & Chen, Anthony & Wei, Yun & Gao, Ziyou, 2022. "Measuring the resilience of an urban rail transit network: A multi-dimensional evaluation model," Transport Policy, Elsevier, vol. 129(C), pages 38-50.
    9. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    10. Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    2. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    3. Jianqiang Liu & Nan Zhao, 2017. "Research on Energy-Saving Operation Strategy for Multiple Trains on the Urban Subway Line," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Zhang, Huan & Zhu, Chunguang & Zheng, Wandong & You, Shijun & Ye, Tianzhen & Xue, Peng, 2016. "Experimental and numerical investigation of braking energy on thermal environment of underground subway station in China's northern severe cold regions," Energy, Elsevier, vol. 116(P1), pages 880-893.
    5. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    6. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    7. Gupta, Shuvomoy Das & Tobin, J. Kevin & Pavel, Lacra, 2016. "A two-step linear programming model for energy-efficient timetables in metro railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 57-74.
    8. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    9. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    10. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    11. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    12. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    13. Gonzalo Sánchez-Contreras & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2023. "A Two-Level Fuzzy Multi-Objective Design of ATO Driving Commands for Energy-Efficient Operation of Metropolitan Railway Lines," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    14. Zhou, Li & Yang, Xin & Wang, Huan & Wu, Jianjun & Chen, Lei & Yin, Haodong & Qu, Yunchao, 2020. "A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    15. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    16. Yang, Songpo & Liao, Feixiong & Wu, Jianjun & Timmermans, Harry J.P. & Sun, Huijun & Gao, Ziyou, 2020. "A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 85-113.
    17. Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
    18. Howlett, Phil, 2016. "A new look at the rate of change of energy consumption with respect to journey time on an optimal train journey," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 387-408.
    19. Ying, Cheng-shuo & Chow, Andy H.F. & Chin, Kwai-Sang, 2020. "An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 210-235.
    20. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320302772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.