IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v112y2023ics0969699723000820.html
   My bibliography  Save this article

Air passenger flow forecasting using nonadditive forecast combination with grey prediction

Author

Listed:
  • Hu, Yi-Chung

Abstract

Air passenger flow forecasting plays a critical role in managing air transportation. It is important to develop accurate methods for forecasting the flow of passengers to formulate relevant operational plans and the schedule of airports. Even though empirical evidence has shown that forecast combination can improve the prediction accuracy of single-model forecasts, no study in the literature on transportation to date has examined the performance of such combinations to predict the demand for air transport. In light of the usefulness of grey prediction, which does not require applying any statistical test to examine the data at hand, and relationships among forecasts to be reckoned with, this study proposes using the nonadditive Choquet fuzzy integral to nonlinearly synthesize forecasts from four commonly used univariate grey prediction models into composite forecasts. The results of experiments confirmed that the risk arising from the incorrect choice of forecasting models can be eliminated by using forecast combinations. The proposed combination method based on grey prediction significantly outperformed the other competitors considered.

Suggested Citation

  • Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jaitra:v:112:y:2023:i:c:s0969699723000820
    DOI: 10.1016/j.jairtraman.2023.102439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699723000820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    2. He, Yuxin & Zhao, Yang & Luo, Qin & Tsui, Kwok-Leung, 2022. "Forecasting nationwide passenger flows at city-level via a spatiotemporal deep learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Qiu, Richard T.R. & Wu, Doris Chenguang & Dropsy, Vincent & Petit, Sylvain & Pratt, Stephen & Ohe, Yasuo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team," Annals of Tourism Research, Elsevier, vol. 88(C).
    4. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    5. Tsui, Wai Hong Kan & Ozer Balli, Hatice & Gilbey, Andrew & Gow, Hamish, 2014. "Forecasting of Hong Kong airport's passenger throughput," Tourism Management, Elsevier, vol. 42(C), pages 62-76.
    6. Andreana, Gianmarco & Gualini, Andrea & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2021. "The disruptive impact of COVID-19 on air transportation: An ITS econometric analysis," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    8. Sun, Xu & Sun, Wangshu & Wang, Jianzhou & Zhang, Yixin & Gao, Yining, 2016. "Using a Grey–Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China," Tourism Management, Elsevier, vol. 52(C), pages 369-379.
    9. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
    10. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    11. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922.
    12. Chan, Chi Kin & Witt, Stephen F. & Lee, Y.C.E. & Song, H., 2010. "Tourism forecast combination using the CUSUM technique," Tourism Management, Elsevier, vol. 31(6), pages 891-897.
    13. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    15. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    16. Samagaio, António & Wolters, Mark, 2010. "Comparative analysis of government forecasts for the Lisbon Airport," Journal of Air Transport Management, Elsevier, vol. 16(4), pages 213-217.
    17. Luis Nobre Pereira & Vitor Cerqueira, 2022. "Forecasting hotel demand for revenue management using machine learning regression methods," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(17), pages 2733-2750, September.
    18. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    2. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    3. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    4. Tascón, Diana C. & Díaz Olariaga, Oscar, 2021. "Air traffic forecast and its impact on runway capacity. A System Dynamics approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    6. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    7. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    8. Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
    9. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    10. Tillmann, Andreas M. & Joormann, Imke & Ammann, Sabrina C.L., 2023. "Reproducible air passenger demand estimation," Journal of Air Transport Management, Elsevier, vol. 112(C).
    11. Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
    12. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    13. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    14. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
    15. Chen, Jieh-Haur & Wei, Hsi-Hsien & Chen, Chih-Lin & Wei, Hsin-Yi & Chen, Yi-Ping & Ye, Zhongnan, 2020. "A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification," Journal of Air Transport Management, Elsevier, vol. 82(C).
    16. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    17. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    18. Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
    19. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    20. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:112:y:2023:i:c:s0969699723000820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.