IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7851-d1144117.html
   My bibliography  Save this article

The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China

Author

Listed:
  • Yansong Zhang

    (Faculty of Earth Resource, China University of Geosciences, Wuhan 430074, China
    Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Xiaolei Fan

    (Faculty of Earth Resource, China University of Geosciences, Wuhan 430074, China)

  • Yu Mao

    (Faculty of Earth Resource, China University of Geosciences, Wuhan 430074, China)

  • Yujie Wei

    (School of Geography and Tourism, Huanggang Normal University, Huanggang 438000, China)

  • Jianming Xu

    (School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China)

  • Lili Wu

    (Centre for Strategic Studies, Chinese Academy of Engineering, Beijing 100088, China)

Abstract

China has become the largest consumer of chemical fertilizers. The excessive application of chemical fertilizers has resulted in a series of problems including environmental pollution, seriously threatening China’s sustainable development. Therefore, it is highly important to study the factors driving chemical fertilizer consumption. In this study, we used the panel data of 31 provinces in China and the Tapio decoupling model to explore the coupling relationship between fertilizer consumption, economic growth and crop yield increase, build the IPAT-LMDI model, and identify and analyze the factors driving the observed changes. The results show the following: (1) Since 2015, the consumption of chemical fertilizers in most provinces of China has decreased significantly, and the implementation of the zero-fertilizer policy in various regions has generally achieved remarkable results. (2) Since 1980, China’s crop production and economic development have undergone coordinated growth, but the decoupling relationship between chemical fertilizer consumption and economic growth has changed from weak to strong, and the dependence of China’s crop production on chemical fertilizers has gradually been reduced. (3) Fertilizer consumption in China is promoted by factors related to economic level (Pg), crop value (Cval), fertilizer efficiency (Feff), fertilization intensity (Fein), per capita arable land area (Clap) and population size (P), while it is restrained by factors related to science and technology level (Ffag), agricultural population (P1) and industrial structure (Inst). (4) Fertilizer consumption has arrived at its peak in East China, South China and Central China, while there is still room for growth in the western areas; gaps in economic and technological development between different provinces are the main factors affecting changes in fertilizer consumption. Finally, we offer specific suggestions for improving the efficiency of chemical fertilizers from the perspectives of farming modes and science and technology.

Suggested Citation

  • Yansong Zhang & Xiaolei Fan & Yu Mao & Yujie Wei & Jianming Xu & Lili Wu, 2023. "The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7851-:d:1144117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    2. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    3. Miaomiao Niu & Xianchun Tan & Jianxin Guo & Guohao Li & Chen Huang, 2021. "Driving Factors and Growth Potential of Provincial Carbon Productivity in China," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    4. Qinpu Liu & Wei Tu & Lijie Pu & Li Zhou, 2022. "Regional Differences and Key Influencing Factors of Fertilizer Integrated Efficiency in China," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    5. Guihua Li & Weishui Yu & Fanhua Meng & Jianfeng Zhang & Changai Lu, 2023. "Pathways and Drivers of Gross N Transformation in Different Soil Types under Long-Term Chemical Fertilizer Treatments," Agriculture, MDPI, vol. 13(2), pages 1-9, January.
    6. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    7. Yuanhong Tian & Matthias Ruth & Dajian Zhu, 2017. "Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2355-2375, December.
    8. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    9. Rong He & Chaofeng Shao & Rongguang Shi & Zheyu Zhang & Run Zhao, 2020. "Development Trend and Driving Factors of Agricultural Chemical Fertilizer Efficiency in China," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    10. Jin Zhang & Günther Manske & Pi Qi Zhou & Bernhard Tischbein & Mathias Becker & Zhao Hua Li, 2017. "Factors influencing farmers’ decisions on nitrogen fertilizer application in the Liangzihu Lake basin, Central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 791-805, June.
    11. Yaoben Lin & Jianhui Yang & Yanmei Ye, 2018. "Spatial–Temporal Analysis of the Relationships between Agricultural Production and Use of Agrochemicals in Eastern China and Related Environmental and Political Implications (Based on Decoupling Appro," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia Zhang & Yiyang Wang & Panjie Su & Weida Zeng & Jingzhe Zhu & Zongshou Cai, 2025. "Sustainable Biochar Fertiliser Production Using Melt Adsorption and Optimisation," Sustainability, MDPI, vol. 17(5), pages 1-16, February.
    2. Khairul Alom & Delwar Akbar & Cheng-Yuan Xu & Hong Tham Dong, 2025. "Trends and Factors Affecting Consumption of Fertilizer in Australia: The Moderating Role of Agri R&D Investment," Sustainability, MDPI, vol. 17(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    2. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    3. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    4. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    5. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    6. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    7. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).
    8. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    9. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    11. Xiao Liu & Yancai Zhang, 2023. "What drives the decoupling progress of China’s civil aviation transportation growth from carbon emissions? A new decomposition analysis," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-18, March.
    12. Michiyuki Yagi & Shunsuke Managi, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1476-1492, December.
    13. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    14. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    15. Román-Collado, Rocío & Casado Ruíz, Virginia, 2024. "Key effects contributing to changes in energy imports in the EU-27 between 2000 and 2020: A decomposition analysis based on the Sankey diagram," Energy Economics, Elsevier, vol. 140(C).
    16. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    17. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    18. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    19. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    20. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7851-:d:1144117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.