IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16135-d992059.html
   My bibliography  Save this article

A GIS-Based Analysis of the Carbon-Oxygen Balance of Urban Forests in the Southern Mountainous Area of Jinan, China

Author

Listed:
  • Donghe Li

    (School of Architecture and Built Environment, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, VIC 3220, Australia
    Landscape Architecture Research Centre, Shandong Jianzhu University, Jinan 250101, China)

  • Huigang Mu

    (Landscape Architecture Research Centre, Shandong Jianzhu University, Jinan 250101, China)

  • Yelin Gao

    (Landscape Architecture Research Centre, Shandong Jianzhu University, Jinan 250101, China)

  • Min Lu

    (Landscape Architecture Research Centre, Shandong Jianzhu University, Jinan 250101, China)

  • Chunlu Liu

    (School of Architecture and Built Environment, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, VIC 3220, Australia)

Abstract

The urban forest is a vital carbon sink base in a city. The carbon-oxygen balance capacity of urban forests affects the urban carbon cycle and urban sustainable development. The forests maintain the carbon-oxygen balance through carbon sequestration and oxygen release (CSOR) processes. The carbon-oxygen balance of urban forests is formed by offsetting the carbon release and oxygen consumption (CROC) process of urban social activities through the CSOR process of forestland. Based on GIS technology, this research used the carbon-oxygen balance model to analyze the CROC and CSOR and study the carbon-oxygen balance of urban forests in the southern mountainous area of Jinan, China. The results of the increase in the carbon-oxygen balance coefficients showed that the carbon-oxygen balance capacity of urban forests showed a decreasing trend, with the decrease in forest area and the increase in fossil energy consumption from 2000 to 2019 in the southern mountainous area of Jinan. To increase the urban carbon-oxygen balance capacity, the city should expand its woodland area to improve the urban forest’s CSOR capacity and adjust the urban energy consumption structure to reduce the CROC of urban social activities.

Suggested Citation

  • Donghe Li & Huigang Mu & Yelin Gao & Min Lu & Chunlu Liu, 2022. "A GIS-Based Analysis of the Carbon-Oxygen Balance of Urban Forests in the Southern Mountainous Area of Jinan, China," Sustainability, MDPI, vol. 14(23), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16135-:d:992059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    2. Kovacs, Kent F. & Haight, Robert G. & Jung, Suhyun & Locke, Dexter H. & O'Neil-Dunne, Jarlath, 2013. "The marginal cost of carbon abatement from planting street trees in New York City," Ecological Economics, Elsevier, vol. 95(C), pages 1-10.
    3. Jun, Wen & Mughal, Nafeesa & Zhao, Jin & Shabbir, Malik Shahzad & Niedbała, Gniewko & Jain, Vipin & Anwar, Ahsan, 2021. "Does globalization matter for environmental degradation? Nexus among energy consumption, economic growth, and carbon dioxide emission," Energy Policy, Elsevier, vol. 153(C).
    4. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
    5. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    6. Manuel Esperon-Rodriguez & Mark G. Tjoelker & Jonathan Lenoir & John B. Baumgartner & Linda J. Beaumont & David A. Nipperess & Sally A. Power & Benoît Richard & Paul D. Rymer & Rachael V. Gallagher, 2022. "Climate change increases global risk to urban forests," Nature Climate Change, Nature, vol. 12(10), pages 950-955, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Nazarko & Eigirdas Žemaitis & Łukasz Krzysztof Wróblewski & Karel Šuhajda & Magdalena Zajączkowska, 2022. "The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level," Energies, MDPI, vol. 15(4), pages 1-12, February.
    2. Tunahan Haciimamoglu & Oguzhan Sungur & Korkmaz Yildirim & Mustafa Yapar, 2025. "Rethinking the Climate Change–Inequality Nexus: The Role of Wealth Inequality, Economic Growth, and Renewable Energy in CO 2 Emissions," Sustainability, MDPI, vol. 17(8), pages 1-19, April.
    3. Daniela Cristina Momete & Manuel Mihail Momete, 2021. "Map and Track the Performance in Education for Sustainable Development across the European Union," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    4. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    5. Manal Elhaj & Jihen Bousrih & Hind Alofaysan, 2024. "Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach," Energies, MDPI, vol. 17(20), pages 1-18, October.
    6. Jinhua Shao & Brayan Tillaguango & Rafael Alvarado & Santiago Ochoa-Moreno & Johanna Alvarado-Espejo, 2021. "Environmental Impact of the Shadow Economy, Globalisation, Trade and Market Size: Evidence Using Linear and Non-Linear Methods," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    7. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    8. Chen, Jiamin & Chen, Yuwei, 2024. "Does natural resources rent promote carbon neutrality: The role of digital finance," Resources Policy, Elsevier, vol. 92(C).
    9. Marc Audi & Marc Poulin & Amjad Ali, 2024. "Environmental Impact of Business Freedom and Renewable Energy: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 672-683, May.
    10. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    11. Yang, Shuangpeng & umar, Muhammad, 2022. "How globalization is reshaping the environmental quality in G7 economies in the presence of renewable energy initiatives?," Renewable Energy, Elsevier, vol. 193(C), pages 128-135.
    12. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    13. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    14. Ying‐Chu Chen, 2020. "Evaluation of greenhouse gas emissions and energy recovery from planting street trees," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 604-612, June.
    15. Iñaki Adánez-Rubio & Antón Pérez-Astray & Alberto Abad & Pilar Gayán & Luis F. Diego & Juan Adánez, 2019. "Chemical looping with oxygen uncoupling: an advanced biomass combustion technology to avoid CO2 emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1293-1306, October.
    16. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    17. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    18. Hossain, Md. Sanowar & Paul, Sanjay & Das, Barun K. & Das, Pronob & Nuhash, Sadman Soumik, 2025. "Techno-econo-environmental feasibility analysis and investigation of engine performance, combustion, and emission characteristics using co-pyrolytic oil derived from tea waste and potato skin," Applied Energy, Elsevier, vol. 377(PA).
    19. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    20. Devran Şanlı & Nadide Gülbay Yiğiteli, 2024. "Do economic complexity and macroeconomic stability asymmetrically affect carbon emissions in OECD? Evidence from nonlinear panel ARDL approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 22175-22198, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16135-:d:992059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.