IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13765-d951613.html
   My bibliography  Save this article

Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids

Author

Listed:
  • Felipe Ramos

    (Polytechnic School of Pernambuco, University of Pernambuco (UPE), Recife 50720-001, PE, Brazil)

  • Aline Pinheiro

    (Energy Storage Division, Edson Mororó Moura Institute of Technology (ITEMM), Recife 51020-280, PE, Brazil)

  • Rafaela Nascimento

    (Polytechnic School of Pernambuco, University of Pernambuco (UPE), Recife 50720-001, PE, Brazil)

  • Washington de Araujo Silva Junior

    (Polytechnic School of Pernambuco, University of Pernambuco (UPE), Recife 50720-001, PE, Brazil)

  • Mohamed A. Mohamed

    (Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt)

  • Andres Annuk

    (Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia)

  • Manoel H. N. Marinho

    (Polytechnic School of Pernambuco, University of Pernambuco (UPE), Recife 50720-001, PE, Brazil)

Abstract

With continuous technological advances, increasing competitiveness of renewable sources, and concerns about the environmental impacts of the energy matrix, the use of hybrid microgrids has been promoted. These generation microsystems, historically composed basically of fossil fuels as the main source, have experienced an energy revolution with the introduction of renewable and intermittent sources. However, with the introduction of these uncontrollable sources, the technical challenges to system stability, low diesel consumption, and security of supply increase. The main objective of this work is to develop an operation and control strategy for energy storage systems intended for application in hybrid microgrids with AC coupling. Throughout the work, a bibliographic review of the existing applications is carried out, as well as a proposal for modification and combination to create a new control strategy. This strategy, based on optimized indirect control of diesel generators, seeks to increase generation efficiency, reduce working time, and increase the introduction of renewable sources in the system. As a result, there is a significant reduction in diesel consumption, a decrease in the power output variance of the diesel generation system, and an increase in the average operating power, which ensures effective control of hybrid plants.

Suggested Citation

  • Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13765-:d:951613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed, Mohamed A., 2022. "A relaxed consensus plus innovation based effective negotiation approach for energy cooperation between smart grid and microgrid," Energy, Elsevier, vol. 252(C).
    2. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    3. Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
    4. Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    5. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    6. João Martins & Sergiu Spataru & Dezso Sera & Daniel-Ioan Stroe & Abderezak Lashab, 2019. "Comparative Study of Ramp-Rate Control Algorithms for PV with Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-15, April.
    7. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    8. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    9. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    10. Wan Chen & Baolian Liu & Muhammad Shahzad Nazir & Ahmed N. Abdalla & Mohamed A. Mohamed & Zujun Ding & Muhammad Shoaib Bhutta & Mehr Gul, 2022. "An Energy Storage Assessment: Using Frequency Modulation Approach to Capture Optimal Coordination," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Washington de Araujo Silva Júnior & Andrea Vasconcelos & Ayrlw Carvalho Arcanjo & Tatiane Costa & Rafaela Nascimento & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Roberto Di, 2023. "Characterization of the Operation of a BESS with a Photovoltaic System as a Regular Source for the Auxiliary Systems of a High-Voltage Substation in Brazil," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Rafaela Nascimento & Felipe Ramos & Aline Pinheiro & Washington de Araujo Silva Junior & Ayrlw M. C. Arcanjo & Roberto F. Dias Filho & Mohamed A. Mohamed & Manoel H. N. Marinho, 2022. "Case Study of Backup Application with Energy Storage in Microgrids," Energies, MDPI, vol. 15(24), pages 1-12, December.
    3. Diego Jose da Silva & Edmarcio Antonio Belati & Jesús M. López-Lezama, 2023. "A Mathematical Programming Approach for the Optimal Operation of Storage Systems, Photovoltaic and Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-24, January.
    4. Wael J. Abdallah & Khurram Hashmi & Muhammad Talib Faiz & Aymen Flah & Sittiporn Channumsin & Mohamed A. Mohamed & Denis Anatolievich Ustinov, 2023. "A Novel Control Method for Active Power Sharing in Renewable-Energy-Based Micro Distribution Networks," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    5. Tatiane Costa & Ayrlw Arcanjo & Andrea Vasconcelos & Washington Silva & Claudia Azevedo & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Marcelo Gradella Villalva & Manoel Mari, 2023. "Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid," Energies, MDPI, vol. 16(3), pages 1-24, January.
    6. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A New Five-Port Energy Router Structure and Common Bus Voltage Stabilization Control Strategy," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Joelton Deonei Gotz & João Eustáquio Machado Neto & José Rodolfo Galvão & Taysa Millena Banik Marques & Hugo Valadares Siqueira & Emilson Ribeiro Viana & Manoel H. N. Marinho & Mohamed A. Mohamed & Ad, 2023. "Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    8. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & S. M. Muyeen, 2022. "Grid Connected Microgrid Optimization and Control for a Coastal Island in the Indian Ocean," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    9. Mariana de Morais Cavalcanti & Tatiane Costa & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Elisabete Barreto & Mohamed A. Mohamed & Adrian Ilinca & Manoel H. N. Marinho, 2023. "Case Studies for Supplying the Alternating Current Auxiliary Systems of Substations with a Voltage Equal to or Higher than 230 kV," Energies, MDPI, vol. 16(14), pages 1-25, July.
    10. Ailton Gonçalves & Gustavo O. Cavalcanti & Marcílio A. F. Feitosa & Roberto F. Dias Filho & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Manoel H. N. Marinho & Attilio Converti & L, 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency," Energies, MDPI, vol. 16(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    2. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    3. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    4. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    5. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    6. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    7. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
    8. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    9. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    10. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    11. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    12. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    13. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    14. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study," Energy Policy, Elsevier, vol. 38(11), pages 7070-7081, November.
    15. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    16. Esposto, Stefano, 2008. "The possible role of nuclear energy in Italy," Energy Policy, Elsevier, vol. 36(5), pages 1584-1588, May.
    17. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    18. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    19. Fattori, Fabrizio & Anglani, Norma & Staffell, Iain & Pfenninger, Stefan, 2017. "High solar photovoltaic penetration in the absence of substantial wind capacity: Storage requirements and effects on capacity adequacy," Energy, Elsevier, vol. 137(C), pages 193-208.
    20. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13765-:d:951613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.