IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2958-d1059729.html
   My bibliography  Save this article

A New Five-Port Energy Router Structure and Common Bus Voltage Stabilization Control Strategy

Author

Listed:
  • Xianyang Cui

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    Fujian Province University Engineering Research Center of Smart Distribution Grid Equipment, Fuzhou 350108, China)

  • Yulong Liu

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    Fujian Province University Engineering Research Center of Smart Distribution Grid Equipment, Fuzhou 350108, China)

  • Ding Yuan

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    Fujian Province University Engineering Research Center of Smart Distribution Grid Equipment, Fuzhou 350108, China)

  • Tao Jin

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    Fujian Province University Engineering Research Center of Smart Distribution Grid Equipment, Fuzhou 350108, China)

  • Mohamed A. Mohamed

    (Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt)

Abstract

Multi-port energy routers are a core device that integrates distributed energy sources and enables energy-to-energy interconnections. For the energy routing system, the construction of its topology, the establishment of internal model switching and the control of common bus voltage stability are the key elements of the research. In this paper, a five-port energy router structure is proposed, including a PV port, an energy storage port, a grid-connected port, a DC load port, and an AC load port. Among them, the energy storage port and the grid-connected port involve bidirectional energy flow, which are the core ports of control. For the system state, a model switching strategy is proposed based on the topology and the port energy flow direction. When the external conditions change, the system can be stabilized by means of a quick response from the energy storage port. When the energy storage is saturated, the state is switched, and the grid-connected port works to achieve system stability. The rapid stabilization of the bus voltage and the free flow of energy are achieved by combining the fast response of the model predictive control with the properties of multiple model switching. Finally, the feasibility of this energy router topology and control strategy is verified by building simulations in MATLAB.

Suggested Citation

  • Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A New Five-Port Energy Router Structure and Common Bus Voltage Stabilization Control Strategy," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2958-:d:1059729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    2. Rafaela Nascimento & Felipe Ramos & Aline Pinheiro & Washington de Araujo Silva Junior & Ayrlw M. C. Arcanjo & Roberto F. Dias Filho & Mohamed A. Mohamed & Manoel H. N. Marinho, 2022. "Case Study of Backup Application with Energy Storage in Microgrids," Energies, MDPI, vol. 15(24), pages 1-12, December.
    3. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    5. Wan Chen & Baolian Liu & Muhammad Shahzad Nazir & Ahmed N. Abdalla & Mohamed A. Mohamed & Zujun Ding & Muhammad Shoaib Bhutta & Mehr Gul, 2022. "An Energy Storage Assessment: Using Frequency Modulation Approach to Capture Optimal Coordination," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A Hierarchical Coordinated Control Strategy for Power Quality Improvement in Energy Router Integrated Active Distribution Networks," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    2. Rafaela Nascimento & Felipe Ramos & Aline Pinheiro & Washington de Araujo Silva Junior & Ayrlw M. C. Arcanjo & Roberto F. Dias Filho & Mohamed A. Mohamed & Manoel H. N. Marinho, 2022. "Case Study of Backup Application with Energy Storage in Microgrids," Energies, MDPI, vol. 15(24), pages 1-12, December.
    3. Joelton Deonei Gotz & João Eustáquio Machado Neto & José Rodolfo Galvão & Taysa Millena Banik Marques & Hugo Valadares Siqueira & Emilson Ribeiro Viana & Manoel H. N. Marinho & Mohamed A. Mohamed & Ad, 2023. "Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    4. Mariana de Morais Cavalcanti & Tatiane Costa & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Elisabete Barreto & Mohamed A. Mohamed & Adrian Ilinca & Manoel H. N. Marinho, 2023. "Case Studies for Supplying the Alternating Current Auxiliary Systems of Substations with a Voltage Equal to or Higher than 230 kV," Energies, MDPI, vol. 16(14), pages 1-25, July.
    5. Diego Jose da Silva & Edmarcio Antonio Belati & Jesús M. López-Lezama, 2023. "A Mathematical Programming Approach for the Optimal Operation of Storage Systems, Photovoltaic and Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-24, January.
    6. Fahad M. Almasoudi, 2023. "Enhancing Power Grid Resilience through Real-Time Fault Detection and Remediation Using Advanced Hybrid Machine Learning Models," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    7. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    8. Raheel Muzzammel & Rabia Arshad & Ali Raza & Nebras Sobahi & Umar Alqasemi, 2023. "Two Terminal Instantaneous Power-Based Fault Classification and Location Techniques for Transmission Lines," Sustainability, MDPI, vol. 15(1), pages 1-24, January.
    9. Matías Garbarino & Jaime Rohten & Rodrigo Morales & José Espinoza & Javier Muñoz & José Silva & David Dewar, 2023. "Extended Operating Region Algorithm for PV Array Connected to Microgrids for Wide Frequency and Amplitude Variations," Energies, MDPI, vol. 16(7), pages 1-22, March.
    10. Washington de Araujo Silva Júnior & Andrea Vasconcelos & Ayrlw Carvalho Arcanjo & Tatiane Costa & Rafaela Nascimento & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Roberto Di, 2023. "Characterization of the Operation of a BESS with a Photovoltaic System as a Regular Source for the Auxiliary Systems of a High-Voltage Substation in Brazil," Energies, MDPI, vol. 16(2), pages 1-25, January.
    11. Pan, Chongchao & Jin, Tai & Li, Na & Wang, Guanxiong & Hou, Xiaowang & Gu, Yueqing, 2023. "Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses," Energy, Elsevier, vol. 270(C).
    12. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    13. Riyadh Kamil Chillab & Aqeel S. Jaber & Mouna Ben Smida & Anis Sakly, 2023. "Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    14. Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Cristina Sousa & Evaldo Costa, 2022. "Types of Policies for the Joint Diffusion of Electric Vehicles with Renewable Energies and Their Use Worldwide," Energies, MDPI, vol. 15(20), pages 1-19, October.
    16. Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    17. Ailton Gonçalves & Gustavo O. Cavalcanti & Marcílio A. F. Feitosa & Roberto F. Dias Filho & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Manoel H. N. Marinho & Attilio Converti & L, 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency," Energies, MDPI, vol. 16(13), pages 1-17, July.
    18. Wan Chen & Zujun Ding & Jun Liu & Jiarong Kan & Muhammad Shahzad Nazir & Yeqin Wang, 2023. "Half-Bridge Lithium-Ion Battery Equalizer Based on Phase-Shift Strategy," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    19. Antonio Venancio M. L. Filho & Andrea S. M. Vasconcelos & Washington de A. S. Junior & Nicolau K. L. Dantas & Ayrlw Maynyson C. Arcanjo & Amanda C. M. Souza & Amanda L. Fernandes & Kaihang Zhang & Kun, 2023. "Impact Analysis and Energy Quality of Photovoltaic, Electric Vehicle and BESS Lead-Carbon Recharge Station in Brazil," Energies, MDPI, vol. 16(5), pages 1-18, March.
    20. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2958-:d:1059729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.