IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13583-d948345.html
   My bibliography  Save this article

Predicting Freshwater Microbial Pollution Using a Spatial Model: Transferability between Catchments

Author

Listed:
  • Jiawei Li

    (School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK)

  • Junyou Liu

    (School of Architecture and Art, Central South University, Changsha 410083, China)

Abstract

Freshwater microbial contamination has become a worldwide problem, but fecal indicator organism (FIO) data are lacking in many catchments and large-scale management is expensive. Therefore, a model that can assist in spatial localization to simulate microbial risk maps and Critical Source Areas (CSAs) is needed. This study aims to generate a predicted risk of microbial contamination in Kent and Leven, Northumberland, and East Suffolk based on the ArcMap hydrological tool using the land use parameters in the Wyre and Yealm catchments. Then, this study will compare the value obtained with the E. coli concentration data (observational risk) in order to evaluate whether land cover weightings are transferable between different catchments and provide microbial risk guidelines for ungauged catchments. In the research, the East Suffolk catchment showed strong fitting with actual values in the rainy and dry seasons after using the predictive values weighted by Wyre and Yealm, respectively. Specifically, as for the models with Yealm land cover weightings, the results show that the adjusted R 2 in the rainy season for East Suffolk is 0.916 ( p < 0.01) while the adjusted R 2 values in the dry season is 0.969 ( p < 0.01). As for models with Wyre land cover weightings, the adjusted R 2 values (rainy season) is 0.872 ( p < 0.01), while the adjusted R 2 values (dry season) is 0.991 ( p < 0.01). This indicates that this spatial model can effectively predict the risk of fecal microbial contamination in the East Suffolk catchment. Second, this research believes that the land cover weightings are more transferable in catchments that have close geographical locations or similar land cover compositions. This paper makes recommendations for future catchment management based on the results obtained.

Suggested Citation

  • Jiawei Li & Junyou Liu, 2022. "Predicting Freshwater Microbial Pollution Using a Spatial Model: Transferability between Catchments," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13583-:d:948345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ribarova, Irina & Ninov, Plamen & Cooper, David, 2008. "Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria," Ecological Modelling, Elsevier, vol. 211(1), pages 241-246.
    2. Stuart N. Lane & Chris J. Brookes & A. Louise Heathwaite & Sim Reaney, 2006. "Surveillant Science: Challenges for the Management of Rural Environments Emerging from the New Generation Diffuse Pollution Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 57(2), pages 239-257, July.
    3. Parajuli, P.B. & Mankin, K.R. & Barnes, P.L., 2008. "Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT," Agricultural Water Management, Elsevier, vol. 95(10), pages 1189-1200, October.
    4. Lam, Q.D. & Schmalz, B. & Fohrer, N., 2010. "Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model," Agricultural Water Management, Elsevier, vol. 97(2), pages 317-325, February.
    5. Jamieson, R. & Gordon, R. & Joy, D. & Lee, H., 2004. "Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches," Agricultural Water Management, Elsevier, vol. 70(1), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shanghong & Liu, Yan & Wang, Taiwei, 2014. "How land use change contributes to reducing soil erosion in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 133(C), pages 65-73.
    2. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    3. Audrey Simon & Michel Bigras Poulin & Alain N. Rousseau & Nicholas H. Ogden, 2013. "Fate and Transport of Toxoplasma gondii Oocysts in Seasonally Snow Covered Watersheds: A Conceptual Framework from a Melting Snowpack to the Canadian Arctic Coasts," IJERPH, MDPI, vol. 10(3), pages 1-12, March.
    4. Coffey, R. & Cummins, E. & Bhreathnach, N. & Flaherty, V.O. & Cormican, M., 2010. "Development of a pathogen transport model for Irish catchments using SWAT," Agricultural Water Management, Elsevier, vol. 97(1), pages 101-111, January.
    5. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.
    6. Danvi, Alexandre & Giertz, Simone & Zwart, Sander J. & Diekkrüger, Bernd, 2017. "Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin," Agricultural Water Management, Elsevier, vol. 192(C), pages 257-270.
    7. Xiaoyan Bai & Wen Shen & Peng Wang & Xiaohong Chen & Yanhu He, 2020. "Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 3987-4002, October.
    8. Banerjee, Simanti & Cason, Timothy N. & de Vries, Frans P. & Hanley, Nick, 2017. "Transaction costs, communication and spatial coordination in Payment for Ecosystem Services Schemes," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 68-89.
    9. Martin Dodge & Rob Kitchin & Matthew Zook, 2009. "How Does Software Make Space? Exploring Some Geographical Dimensions of Pervasive Computing and Software Studies," Environment and Planning A, , vol. 41(6), pages 1283-1293, June.
    10. Zhaofu Li & Chuan Luo & Kaixia Jiang & Rongrong Wan & Hengpeng Li, 2017. "Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
    11. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    12. Banerjee, Simanti, 2017. "Incentives and Nudges for Environmental Stewardship on Farmland: A Lab Experiment on the Agglomeration Bonus," Cornhusker Economics 307025, University of Nebraska-Lincoln, Department of Agricultural Economics.
    13. Shelton, D.R. & Kiefer, L.A. & Pachepsky, Y.A. & Martinez, G. & McCarty, G.W. & Dao, T.H., 2013. "Comparison of microbial quality of irrigation water delivered in aluminum and PVC pipes," Agricultural Water Management, Elsevier, vol. 129(C), pages 145-151.
    14. Ricci, G.F. & Jeong, J. & De Girolamo, A.M. & Gentile, F., 2020. "Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed," Land Use Policy, Elsevier, vol. 90(C).
    15. Her, Younggu & Chaubey, Indrajeet & Frankenberger, Jane & Jeong, Jaehak, 2017. "Implications of spatial and temporal variations in effects of conservation practices on water management strategies," Agricultural Water Management, Elsevier, vol. 180(PB), pages 252-266.
    16. L. J. Bracken & E. A. Oughton & A. Donaldson & B. Cook & J. Forrester & C. Spray & S. Cinderby & D. Passmore & N. Bissett, 2016. "Flood risk management, an approach to managing cross-border hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 217-240, June.
    17. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    18. Hou, Xiaoning & Xu, Zan & Tang, Caihong & Zhang, Shanghong, 2021. "Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices — Jialing River Basin case study," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Hans Thodsen & Csilla Farkas & Jaroslaw Chormanski & Dennis Trolle & Gitte Blicher-Mathiesen & Ruth Grant & Alexander Engebretsen & Ignacy Kardel & Hans Estrup Andersen, 2017. "Modelling Nutrient Load Changes from Fertilizer Application Scenarios in Six Catchments around the Baltic Sea," Agriculture, MDPI, vol. 7(5), pages 1-17, May.
    20. A. R. Slaughter, 2017. "Simulating Microbial Water Quality in Data-Scarce Catchments: an Update of the WQSAM Model to Simulate the Fate of Escherichia coli," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4239-4252, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13583-:d:948345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.