IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i1p101-111.html
   My bibliography  Save this article

Development of a pathogen transport model for Irish catchments using SWAT

Author

Listed:
  • Coffey, R.
  • Cummins, E.
  • Bhreathnach, N.
  • Flaherty, V.O.
  • Cormican, M.

Abstract

SWAT (Soil and Water Assessment Tool) represents a dynamic catchment modelling application that can be applied to any river basin and used to quantify the impact of land management practices on water quality over a continuous period. The objective of this study is to apply the Soil and Water Assessment Tool (SWAT) to model pathogen transport, simulate management practices affecting water quality and predict pathogen loads in Irish catchments. Based on input data regarding agricultural practice, demographics and hydrological parameters for the river Fergus catchment, SWAT was run to predict concentrations of Escherichia coli. Hydrometric validation results display a very good linear relationship between observed and predicted data (Coefficient of determination R2=0.83, Nash-Sutcliffe efficiency E=0.78) and indicate satisfactory simulation of hydrologic processes within the catchment. To date, pathogen predictions have proved variable between observed and simulated figures. Based on recommended values for the quantification of catchment modelling accuracy, predictions for E. coli can be described as acceptable and satisfactory with R2=0.68 and E=0.59. Extensive monitoring is required for such simulations and the current study represents partial validation. Results suggest that although the capabilities exist to simulate pathogen transport in catchments, the capacity to accurately account for all factors that can contribute to water degradation is uncertain. The sensitivity analysis identified the bacteria partition coefficient (BACTKDDB) as the most important input parameter. In addition it reveals areas where further research is required, particularly in assessing the initial concentration of E. coli in human/animal waste. The developed model provides a tool capable of protecting water sources and human health from waterborne pathogens.

Suggested Citation

  • Coffey, R. & Cummins, E. & Bhreathnach, N. & Flaherty, V.O. & Cormican, M., 2010. "Development of a pathogen transport model for Irish catchments using SWAT," Agricultural Water Management, Elsevier, vol. 97(1), pages 101-111, January.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:1:p:101-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00247-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, M.S. & Park, S.W. & Lee, J.J. & Yoo, K.H., 2006. "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, Elsevier, vol. 79(1), pages 72-92, January.
    2. Jamieson, R. & Gordon, R. & Joy, D. & Lee, H., 2004. "Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches," Agricultural Water Management, Elsevier, vol. 70(1), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reder, Klara & Alcamo, Joseph & Flörke, Martina, 2017. "A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers," Ecological Modelling, Elsevier, vol. 351(C), pages 129-139.
    2. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    3. Kim, Jung-Woo & Pachepsky, Yakov A. & Shelton, Daniel R. & Coppock, Cary, 2010. "Effect of streambed bacteria release on E. coli concentrations: Monitoring and modeling with the modified SWAT," Ecological Modelling, Elsevier, vol. 221(12), pages 1592-1604.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Audrey Simon & Michel Bigras Poulin & Alain N. Rousseau & Nicholas H. Ogden, 2013. "Fate and Transport of Toxoplasma gondii Oocysts in Seasonally Snow Covered Watersheds: A Conceptual Framework from a Melting Snowpack to the Canadian Arctic Coasts," IJERPH, MDPI, vol. 10(3), pages 1-12, March.
    2. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    3. Ashok Mishra & S. Kar & V. Singh, 2007. "Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1899-1913, November.
    4. Jiandong Liu & Tao Pan & Deliang Chen & Xiuji Zhou & Qiang Yu & Gerald N. Flerchinger & De Li Liu & Xintong Zou & Hans W. Linderholm & Jun Du & Dingrong Wu & Yanbo Shen, 2017. "An Improved Ångström-Type Model for Estimating Solar Radiation over the Tibetan Plateau," Energies, MDPI, vol. 10(7), pages 1-28, July.
    5. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    6. Juan Huang & Yong Pang & Xiaoqiang Zhang & Yifan Tong, 2019. "Water Environmental Capacity Calculation and Allocation of the Taihu Lake Basin in Jiangsu Province Based on Control Unit," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    7. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    8. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    9. Shelton, D.R. & Kiefer, L.A. & Pachepsky, Y.A. & Martinez, G. & McCarty, G.W. & Dao, T.H., 2013. "Comparison of microbial quality of irrigation water delivered in aluminum and PVC pipes," Agricultural Water Management, Elsevier, vol. 129(C), pages 145-151.
    10. Huiyu Jin & Wanqi Chen & Zhenghong Zhao & Jiajia Wang & Weichun Ma, 2022. "New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin," IJERPH, MDPI, vol. 19(14), pages 1-23, July.
    11. Yan, Renhua & Gao, Junfeng & Huang, Jiacong, 2016. "WALRUS-paddy model for simulating the hydrological processes of lowland polders with paddy fields and pumping stations," Agricultural Water Management, Elsevier, vol. 169(C), pages 148-161.
    12. Dash, Sonam Sandeep & Sahoo, Bhabagrahi & Raghuwanshi, Narendra Singh, 2023. "SWAT model calibration approaches in an integrated paddy-dominated catchment-command," Agricultural Water Management, Elsevier, vol. 278(C).
    13. A. R. Slaughter, 2017. "Simulating Microbial Water Quality in Data-Scarce Catchments: an Update of the WQSAM Model to Simulate the Fate of Escherichia coli," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4239-4252, October.
    14. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    15. Jiawei Li & Junyou Liu, 2022. "Predicting Freshwater Microbial Pollution Using a Spatial Model: Transferability between Catchments," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    16. Cho, Jaepil & Park, Seungwoo & Im, Sangjun, 2008. "Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation," Agricultural Water Management, Elsevier, vol. 95(4), pages 400-408, April.
    17. Reshmidevi, T.V. & Jana, R. & Eldho, T.I., 2008. "Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model," Agricultural Water Management, Elsevier, vol. 95(4), pages 447-457, April.
    18. Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
    19. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    20. Minji Park & Yongchul Cho & Kyungyong Shin & Hyungjin Shin & Sanghun Kim & Soonju Yu, 2021. "Analysis of Water Quality Characteristics in Unit Watersheds in the Hangang Basin with Respect to TMDL Implementation," Sustainability, MDPI, vol. 13(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:1:p:101-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.